Taking the total derivative we get
lɪ+y, [σ^ φ ( χσ—c ) - 2σ2φ, ( χσ—c ) [Bkr+2xcr+r2+дст2∣] h(χ°^c}dc
{£ [r [ɪ - * ■ i)] + ⅛φ ■ c) [Bkr + . Xcr + 2 + ∆σ2∣] "«.} d = 0
and hence
√= ʃ ∞ [r [ɪ - Φ (—)] + ɪφ (—) [Bkr + 2Xcr + r2 +∆σ2∣] dh(xc) dXc
dc _ J-∞ LL ' σ,- ∕J 2σv ∖ σv ) I 1 c ' 1 "lJ dσχc c
dσχc - ɪ + - ʃɪ [rφ (χσ∏ - ⅛φ' (χσ-) [Bkr+2χr+r2+^2∣] ⅛(χc)dχc
= ʃɪ [r [ɪ - * (χσ-c)] + 2⅛φ (χσ-c) [Bkr+2χcr+r2+1] ⅜1 dχc
ɪ + - ʃɪ Φ ( xσ-c ) [r + x2σ-c [Bkr + 2χcr + r2 + ^21] ⅛(χc )dχc
where the second line uses the fact that φ'(x) =
—
ɪ— e
√2πσχc
[χc-μχc ]2
2σ2
χc
we get
[χc-μχc ]2
dh(Χc) ɪ - ~~2σζ
χ χc
dσχc √2π
—xφ(x). Assuming a normal density h(Xc) =
[χc-μχc ]2 ɪ
σ4 σ2
χc χc
and hence
- [Xc-μXc ]2
d-c σXc ʃɪ [r [ɪ- * (χσ-c)] + 2⅛φ (χσ-c) [Bkr + 2χcr+ r2 + ^2]][ɪ- χ -X x ^∏σχ-e 2σχc dχc
dσχc - [Xc-μXc]2
ɪ + ɪ ʃ ∞ φ ( ' ) [r + ¾-c [Bkr + 2Χcr + r2 + ∆σ21] ɔ-i---e 27XC dΧc
1 σv .1 ∞ σ∙. ; L 2σJ; l ' c 1 1 2jJ √2πσXc c
33
More intriguing information
1. The name is absent2. A Rare Case Of Fallopian Tube Cancer
3. Financial Development and Sectoral Output Growth in 19th Century Germany
4. AMINO ACIDS SEQUENCE ANALYSIS ON COLLAGEN
5. Food Prices and Overweight Patterns in Italy
6. he Virtual Playground: an Educational Virtual Reality Environment for Evaluating Interactivity and Conceptual Learning
7. The name is absent
8. Input-Output Analysis, Linear Programming and Modified Multipliers
9. The name is absent
10. Does Competition Increase Economic Efficiency in Swedish County Councils?