The name is absent



After collecting terms


{ι+ɪ
+ {-2⅛J '


f c 1φ / c [Bkr + 2Xcr + r2 + ∆σ2]1 l
σ
v       2σv       σv


( —c---) [Bkr + 2cr + r2 + ∆σ2 ] +


[Xc


συ


dc


φ' (—c) [Bkr + 2Xcr + r2 + ∆σ2] I


v


r + Xc 2 c [Bkr + 2Xcr + r2 +
v2

dc


+ I-Λ φfXc-^ )

I V σv J L


Bkr + 2cr + r2 + ∆σ2


[Xc
σ2
σv


— [Bkr + 2Xcr + r2 + ∆σ,2] j>


v


The second line uses φ'(x) = -xφ(x). If Xc is as defined above, we know that φ (⅜-i) = Φ(1)-

Using this in the derivative we get


dc


—2 [Bkr + 2cr + r2 + ∆σ2 Bkr 2Xcr r2 ∆σ2 ]

2σv l u ut


v


1 I φ(1) I

1 + _ r +
σv


ɪ [Bkr + 2Xcr + r2 + ∆σ2 ]
v l                                            u-


1 + φ(1) r + ɪ [Bkr + 2Xcr + r2 + ∆σ2]
σv           2,σv l                c                   uj


rφ(1)


σv + φ(1) r + ɪ [Bkr +


v [ J -B]+2σV-2v[1-Φ(1)]-φ(1)[Bkr+r2+∆σ2 ]


[(1)+σv ]


r + r2 + ∆σ2 ]


The last term of the denominator becomes


1

r + ---[Bkr +

1


v [1 - Bl + 2σ2 - 2rσυ [1 - Φ(1)] - φ(1)[Bkr + r2 + ∆σ2 ]     2      2

------------------------------------------------------------r + r2 + ∆σ* ]

[rφ(1) + συ ]


v [rφ(1) + σv ]

1


v [rφ(1) + σv ]


^2συ r[rφ(1) + συ ] + Bkr [rφ(1) + συ ] + krσυ - - B j + 2rσ2 - 2r2 συ [1 - Φ(1)] - rφ(1)[Bkr + r2 + ∆σj ] + [r2 + ∆σj ] [rφ(1) + συ ]j
Bkrσv + krσv - b] + 4rσV + 2r2σ^[Φ(1) + φ(1) - 1] + σv [r2 + ∆σ^ ]] > 0


It is positive as 0 < δ,B < 1 implies that B > 0 and Φ(1) + φ(1) 1 > 0.

Proof of Proposition 9 An increase in the variance σ2χc can result in nonmonotonic behavior in
precautionary reductions, e.g., it can first decrease and then increase the optimal loading
c.

The optimal loading when there is uncertainty about Xc was defined as

k


z

-∞


• (⅛c )l


+ —— φ (— cʌ) [Bkr + 2Xcr + r2 + ∆σ2] h(X,.)dX,. = 0

v συ Jl-


32




More intriguing information

1. ENERGY-RELATED INPUT DEMAND BY CROP PRODUCERS
2. The name is absent
3. Qualifying Recital: Lisa Carol Hardaway, flute
4. The name is absent
5. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia
6. he Effect of Phosphorylation on the Electron Capture Dissociation of Peptide Ions
7. The name is absent
8. EMU's Decentralized System of Fiscal Policy
9. Evaluating the Impact of Health Programmes
10. Forecasting Financial Crises and Contagion in Asia using Dynamic Factor Analysis