The name is absent



After collecting terms


{ι+ɪ
+ {-2⅛J '


f c 1φ / c [Bkr + 2Xcr + r2 + ∆σ2]1 l
σ
v       2σv       σv


( —c---) [Bkr + 2cr + r2 + ∆σ2 ] +


[Xc


συ


dc


φ' (—c) [Bkr + 2Xcr + r2 + ∆σ2] I


v


r + Xc 2 c [Bkr + 2Xcr + r2 +
v2

dc


+ I-Λ φfXc-^ )

I V σv J L


Bkr + 2cr + r2 + ∆σ2


[Xc
σ2
σv


— [Bkr + 2Xcr + r2 + ∆σ,2] j>


v


The second line uses φ'(x) = -xφ(x). If Xc is as defined above, we know that φ (⅜-i) = Φ(1)-

Using this in the derivative we get


dc


—2 [Bkr + 2cr + r2 + ∆σ2 Bkr 2Xcr r2 ∆σ2 ]

2σv l u ut


v


1 I φ(1) I

1 + _ r +
σv


ɪ [Bkr + 2Xcr + r2 + ∆σ2 ]
v l                                            u-


1 + φ(1) r + ɪ [Bkr + 2Xcr + r2 + ∆σ2]
σv           2,σv l                c                   uj


rφ(1)


σv + φ(1) r + ɪ [Bkr +


v [ J -B]+2σV-2v[1-Φ(1)]-φ(1)[Bkr+r2+∆σ2 ]


[(1)+σv ]


r + r2 + ∆σ2 ]


The last term of the denominator becomes


1

r + ---[Bkr +

1


v [1 - Bl + 2σ2 - 2rσυ [1 - Φ(1)] - φ(1)[Bkr + r2 + ∆σ2 ]     2      2

------------------------------------------------------------r + r2 + ∆σ* ]

[rφ(1) + συ ]


v [rφ(1) + σv ]

1


v [rφ(1) + σv ]


^2συ r[rφ(1) + συ ] + Bkr [rφ(1) + συ ] + krσυ - - B j + 2rσ2 - 2r2 συ [1 - Φ(1)] - rφ(1)[Bkr + r2 + ∆σj ] + [r2 + ∆σj ] [rφ(1) + συ ]j
Bkrσv + krσv - b] + 4rσV + 2r2σ^[Φ(1) + φ(1) - 1] + σv [r2 + ∆σ^ ]] > 0


It is positive as 0 < δ,B < 1 implies that B > 0 and Φ(1) + φ(1) 1 > 0.

Proof of Proposition 9 An increase in the variance σ2χc can result in nonmonotonic behavior in
precautionary reductions, e.g., it can first decrease and then increase the optimal loading
c.

The optimal loading when there is uncertainty about Xc was defined as

k


z

-∞


• (⅛c )l


+ —— φ (— cʌ) [Bkr + 2Xcr + r2 + ∆σ2] h(X,.)dX,. = 0

v συ Jl-


32




More intriguing information

1. The name is absent
2. ‘Goodwill is not enough’
3. Do Decision Makers' Debt-risk Attitudes Affect the Agency Costs of Debt?
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. Detecting Multiple Breaks in Financial Market Volatility Dynamics
9. Trade Openness and Volatility
10. Who runs the IFIs?