The name is absent



Which implies
δ [Bk + 2c] = k δ-φ ——c[Bkr + 2Xcr + r2 + σ22
or equivalently

- σu1 ] - 2δr


c = k 1 - b - r 1 - Φ Γχ--ʌ) - 21-φ(xC-^c) [Bkr + 2Xcr + r2 + σ22 - σ2ι]

2 Lδ _l L σv ) _l 2σv σv )

Proof ofProposition 6 For all values of parameters B, k, r, δ, and σv, there exists a critical level
X
c such that an increase in the variance σ2u decreases the optimal loading c.

Proof: First, we will show that using the above parameters the optimal loading c = Xc σv. Using
the proposed
c in the equation that implicitly defines c we get

- φ (⅛


φX- )

2σv ∖ σv j


[Bkr + 2Xcr + r2 + ∆σU ]


= Xc - σv - k [■ - B]


+ r [1 - Φ(1)] + -1-φ(1)[Bkr + 2χr + r2 + ∆σU]
2
σv

= χ l^σv + r,(1)1 - σv - k Γ1 - BI + r [1 - ф(1)] + J_φ(ι')[Bkr + r2 + ∆σl]
L      σv      J            2 Lδ J                        '2σ,∙

v [1 - b] + 2σv - 2v[1 - ф(1)] - φ I bKr + r2 + ^U]        k Γ1   _l                  1              2      2

= ----"------------------z--σv - Ô U - b + r [1 - ф(1)] +,(1)[Bkr + r + ^U]

2σv                                         2 δ J                   2σv

= k [1 - b + σ - r[1 - Φ(1)] - ɪφ(1)[bKr + r2 + ∆σ^] - σ - k [1 - B + r [1 - Φ(1)] + ɪφ(1)[Bkr + r2 + ∆σ^]

2 δ                             2σv                                2 δ                        2σv

= 0

The first line is the equation that defines c. The second line uses the proposed c = χc σv. The
third line factors out X
c before the fourth line uses the expression for Xc.

Second, to get ddc^, totally differentiate the above equation that implicitly defines c to obtain

1+ r ,, (χc-cʌ - ɪ φ (χc-cʌ [Bkr + 2Xcr + r2 +∆σU]) de

I σv σ σv J 2σv ∖ σv J                           J

+ I r[Xc2 c] φ (χc---k - y12φ (χc---k [Bkr + 2Xcr + r2 + ∆σ'2] - [X; 3 c] φ' (χc--c^ [Bkr + 2Xcr + r2 + ∆σU] v

I σ2      σv  J 2σ2  ∖ σv  J                                2σ3     σv J                           J

=0

31



More intriguing information

1. Large Scale Studies in den deutschen Sozialwissenschaften:Stand und Perspektiven. Bericht über einen Workshop der Deutschen Forschungsgemeinschaft
2. The name is absent
3. Computational Experiments with the Fuzzy Love and Romance
4. Spectral density bandwith choice and prewightening in the estimation of heteroskadasticity and autocorrelation consistent covariance matrices in panel data models
5. The Distribution of Income of Self-employed, Entrepreneurs and Professions as Revealed from Micro Income Tax Statistics in Germany
6. Anti Microbial Resistance Profile of E. coli isolates From Tropical Free Range Chickens
7. The name is absent
8. On the Integration of Digital Technologies into Mathematics Classrooms
9. Opciones de política económica en el Perú 2011-2015
10. Reconsidering the value of pupil attitudes to studying post-16: a caution for Paul Croll