The name is absent



l3 = θlι + (1


ʌ

θ)l2 is feasible as the choice set of possible loadings is unbounded.


[T (m)](X3 )


max { kl - X32 + δ ʃ


m(c(X3, l) + v + u)f1(u)du g(v)dv
-∞


c 00
δ /
⅛c-


У m(c(X3,l)+ r + v + u)f2 (u)du g(v)dv j∙


Xc
kl3 - X32 + δ

J-00


[   m(c(X3, l3) + v + u)f1(u)du g(v)dv

—o


c 00
δ /
⅛c-


/00

m(c(X3,13 ) + r + v + u)f2(u)du g(v)dv


k [θl^χ + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

-sr       λ , -sr f ∙.     ,→ zʌ. , -sr f ∙.


/■Xc

+δ

— o


ec(X1,l1) (1 +c(X2,l2) y∞ m (θ [c(X1,ι^1 ) + υ + U +(1 - θ) [c(X2 ,l^2) + v + u]) f1(u)du g(v)dv


C 00
+
δ /

Xc


θc(X1∕1b (1 ff)c(X2,t2)


J'   m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)dug(v)dv


The second line uses the fact that l3 is feasible and hence the value under the optimum by definition

ʌ

has to be at least as high. The third line uses the definition of X3 and l3. Using Proposition 1 in the

above equation, namely that c(X1, l1) = c(X2, l2) = c we get (the second line utilizes the fact that
both
m and x2 are concave functions).

[T(m)](X3)   k [θl^1 + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

^ ,J- .              .   ,       i-.


Xc
+δ

— — о


Ω ~/ V 7.∖  /1 Ω^δV. 7.∖  . „

У m (θ [c(X1, /1 ) + V + u] +(1 - θ) [c(X2, Z2) + V + u]) f1(u)du g(v)dv

C 00
+
δ /

Xc


ʌ ʌ

θc(X1,l 1) (1 ff)c(X2,l 2)


J' m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)du g(v)dv


12 - (1 - θ)X22


ʌ                          ʌ               I

> θklι + (1 - θ)k^2 - θX

+δ              [θm ^c(X1 ,l^1)+ v + u) +(1 - θ)m (c(X2,Z^2 ) + v + u)] f1(u)du g(v)dv

J'    J' [θm (c(X1,l^1)+ r + v + u) +(1 - θ)m (c(X2 ,l^2)+ r + v + u)] f2 (u)dug(v)dv

θ fkl^1 - X12 + δ [      [ m fc(X1,l"1 ) + v + u) f1 (u)du g(v)dv

—00  ——∞

J^    J^   m (c(X1,l^1)+ r + v + u) f2(u)dug(v)dv]

+(1 - θ) kl2


- X2 + δ [      [ m (c(X2,l^2) + v + u) f1(u)du g(v)dv

—     

X    J^   m (c(X2,l^2) + r + v + u) f2(u)dug(v)dv]

θ[T(m)](X1) + (1 - θ)[T(m)](X2)

The last two lines are simple rearrangements and definition of the value function. We hence know
that the unique attractor, the value function
V(X) is concave.

28



More intriguing information

1. WP RR 17 - Industrial relations in the transport sector in the Netherlands
2. MULTIPLE COMPARISONS WITH THE BEST: BAYESIAN PRECISION MEASURES OF EFFICIENCY RANKINGS
3. Passing the burden: corporate tax incidence in open economies
4. Fiscal Sustainability Across Government Tiers
5. The name is absent
6. Cardiac Arrhythmia and Geomagnetic Activity
7. The fundamental determinants of financial integration in the European Union
8. On the job rotation problem
9. The name is absent
10. The name is absent
11. LOCAL PROGRAMS AND ACTIVITIES TO HELP FARM PEOPLE ADJUST
12. Handling the measurement error problem by means of panel data: Moment methods applied on firm data
13. The name is absent
14. Developments and Development Directions of Electronic Trade Platforms in US and European Agri-Food Markets: Impact on Sector Organization
15. The name is absent
16. Technological progress, organizational change and the size of the Human Resources Department
17. Ruptures in the probability scale. Calculation of ruptures’ values
18. The name is absent
19. The name is absent
20. Experimental Evidence of Risk Aversion in Consumer Markets: The Case of Beef Tenderness