The name is absent



l3 = θlι + (1


ʌ

θ)l2 is feasible as the choice set of possible loadings is unbounded.


[T (m)](X3 )


max { kl - X32 + δ ʃ


m(c(X3, l) + v + u)f1(u)du g(v)dv
-∞


c 00
δ /
⅛c-


У m(c(X3,l)+ r + v + u)f2 (u)du g(v)dv j∙


Xc
kl3 - X32 + δ

J-00


[   m(c(X3, l3) + v + u)f1(u)du g(v)dv

—o


c 00
δ /
⅛c-


/00

m(c(X3,13 ) + r + v + u)f2(u)du g(v)dv


k [θl^χ + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

-sr       λ , -sr f ∙.     ,→ zʌ. , -sr f ∙.


/■Xc

+δ

— o


ec(X1,l1) (1 +c(X2,l2) y∞ m (θ [c(X1,ι^1 ) + υ + U +(1 - θ) [c(X2 ,l^2) + v + u]) f1(u)du g(v)dv


C 00
+
δ /

Xc


θc(X1∕1b (1 ff)c(X2,t2)


J'   m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)dug(v)dv


The second line uses the fact that l3 is feasible and hence the value under the optimum by definition

ʌ

has to be at least as high. The third line uses the definition of X3 and l3. Using Proposition 1 in the

above equation, namely that c(X1, l1) = c(X2, l2) = c we get (the second line utilizes the fact that
both
m and x2 are concave functions).

[T(m)](X3)   k [θl^1 + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

^ ,J- .              .   ,       i-.


Xc
+δ

— — о


Ω ~/ V 7.∖  /1 Ω^δV. 7.∖  . „

У m (θ [c(X1, /1 ) + V + u] +(1 - θ) [c(X2, Z2) + V + u]) f1(u)du g(v)dv

C 00
+
δ /

Xc


ʌ ʌ

θc(X1,l 1) (1 ff)c(X2,l 2)


J' m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)du g(v)dv


12 - (1 - θ)X22


ʌ                          ʌ               I

> θklι + (1 - θ)k^2 - θX

+δ              [θm ^c(X1 ,l^1)+ v + u) +(1 - θ)m (c(X2,Z^2 ) + v + u)] f1(u)du g(v)dv

J'    J' [θm (c(X1,l^1)+ r + v + u) +(1 - θ)m (c(X2 ,l^2)+ r + v + u)] f2 (u)dug(v)dv

θ fkl^1 - X12 + δ [      [ m fc(X1,l"1 ) + v + u) f1 (u)du g(v)dv

—00  ——∞

J^    J^   m (c(X1,l^1)+ r + v + u) f2(u)dug(v)dv]

+(1 - θ) kl2


- X2 + δ [      [ m (c(X2,l^2) + v + u) f1(u)du g(v)dv

—     

X    J^   m (c(X2,l^2) + r + v + u) f2(u)dug(v)dv]

θ[T(m)](X1) + (1 - θ)[T(m)](X2)

The last two lines are simple rearrangements and definition of the value function. We hence know
that the unique attractor, the value function
V(X) is concave.

28



More intriguing information

1. The name is absent
2. Spectral density bandwith choice and prewightening in the estimation of heteroskadasticity and autocorrelation consistent covariance matrices in panel data models
3. The Functions of Postpartum Depression
4. Lumpy Investment, Sectoral Propagation, and Business Cycles
5. Parallel and overlapping Human Immunodeficiency Virus, Hepatitis B and C virus Infections among pregnant women in the Federal Capital Territory, Abuja, Nigeria
6. CHANGING PRICES, CHANGING CIGARETTE CONSUMPTION
7. The name is absent
8. SOME ISSUES CONCERNING SPECIFICATION AND INTERPRETATION OF OUTDOOR RECREATION DEMAND MODELS
9. The name is absent
10. AN IMPROVED 2D OPTICAL FLOW SENSOR FOR MOTION SEGMENTATION