The name is absent



l3 = θlι + (1


ʌ

θ)l2 is feasible as the choice set of possible loadings is unbounded.


[T (m)](X3 )


max { kl - X32 + δ ʃ


m(c(X3, l) + v + u)f1(u)du g(v)dv
-∞


c 00
δ /
⅛c-


У m(c(X3,l)+ r + v + u)f2 (u)du g(v)dv j∙


Xc
kl3 - X32 + δ

J-00


[   m(c(X3, l3) + v + u)f1(u)du g(v)dv

—o


c 00
δ /
⅛c-


/00

m(c(X3,13 ) + r + v + u)f2(u)du g(v)dv


k [θl^χ + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

-sr       λ , -sr f ∙.     ,→ zʌ. , -sr f ∙.


/■Xc

+δ

— o


ec(X1,l1) (1 +c(X2,l2) y∞ m (θ [c(X1,ι^1 ) + υ + U +(1 - θ) [c(X2 ,l^2) + v + u]) f1(u)du g(v)dv


C 00
+
δ /

Xc


θc(X1∕1b (1 ff)c(X2,t2)


J'   m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)dug(v)dv


The second line uses the fact that l3 is feasible and hence the value under the optimum by definition

ʌ

has to be at least as high. The third line uses the definition of X3 and l3. Using Proposition 1 in the

above equation, namely that c(X1, l1) = c(X2, l2) = c we get (the second line utilizes the fact that
both
m and x2 are concave functions).

[T(m)](X3)   k [θl^1 + (1 - θ)⅛] - [θX1 + (1 - θ)X2]2

^ ,J- .              .   ,       i-.


Xc
+δ

— — о


Ω ~/ V 7.∖  /1 Ω^δV. 7.∖  . „

У m (θ [c(X1, /1 ) + V + u] +(1 - θ) [c(X2, Z2) + V + u]) f1(u)du g(v)dv

C 00
+
δ /

Xc


ʌ ʌ

θc(X1,l 1) (1 ff)c(X2,l 2)


J' m (θ [c(X1,l^1) + r + v + u] +(1 - θ) [c(X2,l^2) + r + v + u]) f2(u)du g(v)dv


12 - (1 - θ)X22


ʌ                          ʌ               I

> θklι + (1 - θ)k^2 - θX

+δ              [θm ^c(X1 ,l^1)+ v + u) +(1 - θ)m (c(X2,Z^2 ) + v + u)] f1(u)du g(v)dv

J'    J' [θm (c(X1,l^1)+ r + v + u) +(1 - θ)m (c(X2 ,l^2)+ r + v + u)] f2 (u)dug(v)dv

θ fkl^1 - X12 + δ [      [ m fc(X1,l"1 ) + v + u) f1 (u)du g(v)dv

—00  ——∞

J^    J^   m (c(X1,l^1)+ r + v + u) f2(u)dug(v)dv]

+(1 - θ) kl2


- X2 + δ [      [ m (c(X2,l^2) + v + u) f1(u)du g(v)dv

—     

X    J^   m (c(X2,l^2) + r + v + u) f2(u)dug(v)dv]

θ[T(m)](X1) + (1 - θ)[T(m)](X2)

The last two lines are simple rearrangements and definition of the value function. We hence know
that the unique attractor, the value function
V(X) is concave.

28



More intriguing information

1. FOREIGN AGRICULTURAL SERVICE PROGRAMS AND FOREIGN RELATIONS
2. Protocol for Past BP: a randomised controlled trial of different blood pressure targets for people with a history of stroke of transient ischaemic attack (TIA) in primary care
3. The name is absent
4. Restricted Export Flexibility and Risk Management with Options and Futures
5. THE EFFECT OF MARKETING COOPERATIVES ON COST-REDUCING PROCESS INNOVATION ACTIVITY
6. TWENTY-FIVE YEARS OF RESEARCH ON WOMEN FARMERS IN AFRICA: LESSONS AND IMPLICATIONS FOR AGRICULTURAL RESEARCH INSTITUTIONS; WITH AN ANNOTATED BIBLIOGRAPHY
7. Financial Market Volatility and Primary Placements
8. A multistate demographic model for firms in the province of Gelderland
9. The name is absent
10. Robust Econometrics