Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test



But, by Lemma 16(b),

trE


(N Pi DTwiw


<M,


for some constant M. This implies that

N ∑i DTwi (ui - EFw ui)


2

→ 0,


as (N, T →∞). Thus, by Chebyshev’s inequality,

N Pi DTwi (ui - EFwui) →p 0,                  (86)

as (N, T →∞). Then, Lemma 16(a), (85) and (86) imply our desired result. ¥

Proof of Theorem 5

By Lemma 2(a) and (b). ¥

Proof of Theorem 6

By Lemma 2(c), (d), and Lemma 3. ¥

Before we prove the rest of the theorems given in Section 4, we introduce
the following notation:

Al = NN PiT Pt (xit - xi) (xit - xi)' ;

A2 = N PiT Pt (xit - xi) (vit - vi) ;

A3 = N Pi xixi; A4 = NN Pi xiui; A5 = N1 Pi xivi;

(87)


B3 = NN Pi ziz0; B4 = N1 Pi ¾⅛ B5 = N Pi Zivi;

C = nN ∑i xiZ0;

F1 =A3-CB3-1C0; F2 = A4+A5 - CB3-1 (B4+B5).

Proof of Theorem 7

Using the notation given in (87) , we can express the GLS estimator βg by

√NTG⅛g - β)

=  £Gx,tAιGχ,T + θTGx,t ©A3 - CB-1C0} GxT] -1

× √NTG χ,T ©A2 + θT £ (A4 + A5) - CB-1 (B4 + B5)]} ,    (88)

where θT = √σ2/(TσU + σV).

Part (a)

First, consider

θ2T Gx,T A3 - CB3-1C0 Gx,T

θ2 G   D — 1 ½                N Pi Dχ,TXixiDx,T

θTGx,TDx,T S     1 1 Y'  ∩   - ~∣∖ 1 1 γ-1 ~ ~∣∖ -1 1 1 Y' ~ ~ ,4   

I    In∑1 Dx,Txizi) Nn ∑i zizi) Nn ∑i zixiDxtT)

×Dx-, 1T Gx,T .

55



More intriguing information

1. Psychological Aspects of Market Crashes
2. The name is absent
3. AN ANALYTICAL METHOD TO CALCULATE THE ERGODIC AND DIFFERENCE MATRICES OF THE DISCOUNTED MARKOV DECISION PROCESSES
4. Modelling the Effects of Public Support to Small Firms in the UK - Paradise Gained?
5. The name is absent
6. The name is absent
7. Solidaristic Wage Bargaining
8. The name is absent
9. The name is absent
10. Protocol for Past BP: a randomised controlled trial of different blood pressure targets for people with a history of stroke of transient ischaemic attack (TIA) in primary care