for some constant M2 < ∞. By Assumptions 2 and 6(i), for t = [Tr] and finite
constant M2 , we have
sup sup E kD1Tx1,itk4
i,T 1≤t≤T
≤ sup sup M3 (∣∣D1TIl4E ∣∣(xι,it
i,T 1≤t≤T
→ sup sup ∣τ1 (r) Θ1,i ∣4 < ∞.
i r∈[0,1]
Ex1,it)k4+ kD1TEx1,itk4
Next, similarly, by Assumptions 3(ii) and (iii),
sup sup E ∣x2,it ∣4 ≤ sup sup M3 E∣x2,it
i,T 1≤t≤T i,T 1≤t≤T
< ∞,
Ex2,itk4+kEx2,itk4
and by Assumptions 4(ii) and (iii) and 6(iii) and (iv),
sup sup Ekx3,itk4 ≤
i,T 1≤t≤T
sup
i,T
sup M3 E °x3,it - EFzi x3,it°4 + ∣Ex3,it∣4
1≤t≤T i
Therefore,
sup sup
i,T 1≤t≤T
which yields (83). ¥
Part (c)
By Lemma 16(a). ¥
Part (d)
By Lemma 16(d). ¥
M2
∞.
E (suΡi,t °x3,it - EFzi x3,it°4)
+ supi,t E ° ° EFzi x3,it - Ex3,it°4
+ supi,t ∣Ex3,it ∣4
kGx,T (xit
t
Xi)k2
2<M,
Proof of Lemma 3
By Lemma 16(c). ¥
Proof of Lemma 4
Write
., Pi Dtwi≈i=N Pi D
Twei
(ui
Ef.Ui) + (N Pi DT⅛W,'DT) λ. (85)
Notice that by Assumption 10,
∣Ef ɪ P
Fw ° N
i DT wei (ui
EFwui)
2 σ2 1
) = NutrE\N Pi DtυjiWj0 DTJ ■
54
More intriguing information
1. Governance Control Mechanisms in Portuguese Agricultural Credit Cooperatives2. The name is absent
3. The name is absent
4. The purpose of this paper is to report on the 2008 inaugural Equal Opportunities Conference held at the University of East Anglia, Norwich
5. Competition In or For the Field: Which is Better
6. CAN CREDIT DEFAULT SWAPS PREDICT FINANCIAL CRISES? EMPIRICAL STUDY ON EMERGING MARKETS
7. The name is absent
8. Eigentumsrechtliche Dezentralisierung und institutioneller Wettbewerb
9. The Integration Order of Vector Autoregressive Processes
10. The name is absent