Neighborhood Effects, Public Housing and Unemployment in France



Dependent variable         Public            Deprived                 Unemployment

housing

neighborhood

Model 1

Model 2

Residential variables

Deprived neigh.

Public housing

Personal characteristics

Age                      -0.0023NS   (0.0042)

Squared age              2*10-6N S   (5*10-5)

Nationality

French nationality         Ref.

Fr. born abroad        0.0562***    (0.0140)

Foreign nation.          0.0887***    (0.0180)

Education

No diploma             0.0295**    (0.0153)

lower sec. edu.       0.0239N S    (0.0152)

Vocational training     0.0108N S    (0.0124)

High school final dip.      Ref.

University degree      -0.0213NS   (0.0132)

Occupational status

Independent w.        -0.0950***   (0.0089)

Executive              -0.0841***   (0.0100)

Intermediate prof.         Ref.

Office worker            0.0714***    (0.0714)

Blue-collar worker      0.1023***    (0.0119)

Characteristics of the spouse

Age                       -0.0118***   (0.0035)

Squared age                0.0001**    (0.00004)

Nationality

French nationality         Ref.

Fr. born abroad        0.0615***    (0.0147)

Foreign nation.          0.0522***    (0.0172)

Education

No diploma            0.1428***    (0.0187)

lower sec. edu.       0.0917***    (0.0162)

Vocational training     0.0674***    (0.0134)

High school final dip.      Ref.

University degree      -0.0443***   (0.0112)

Number of children

None                    Ref.

One                   0.0165NS    (0.0105)

Two                    0.0268**    (0.0112)

Three                  0.0592***    (0.0158)

Four of more           0.1281***    (0.0248)

Log likelihood                     -4,033

Pseudo-R2                      0.212

# Observations                  10.473

0.3189***    (0.0137)

0.0001NS   (0.0049)

-8*10-6NS   (5*10-5)

Ref.

0.0362**    (0.0171)

0.0745***    (0.0228)

0.0554***    (0.0209)

0.0281NS   (0.0197)

0.0166NS   (0.0166)

Ref.

-0.0355**    (0.0170)

-0.0579***   (0.0164)

-0.1050***   (0.0139)

Ref.

0.0338*     (0.0181)

0.0658***    (0.0146)

Ref.

0.0818***    (0.0182)

0.0674***    (0.0236)

0.1010***    (0.0208)

0.0456**    (0.0182)

0.0593***    (0.0163)

Ref.

0.0021NS    0.0154)

Ref.

0.00024NS (0.0133)

-0.0209NS   (0.0136)

-0.0091NS   (0.0176)

0.0126NS   (0.0252)

-5,527

0.153

_________10.473_________

-0.0081***    (0.0019)

9*10-5***    (2*10-5)

Ref.

0.0226***    (0.0092)

0.0610***    (0.0135)

0.0249**     (0.0110)

0.0228**     (0.0110)

0.0036NS    (0.0082)

Ref.

-0.00095NS   (0.0083)

-0.0297***    (0.0062)

-0.0197***    (0.0064)

Ref.

-0.0062NS   (0.0080)

0.0139**     (0.0071)

Ref.

0.0190**     (0.0093)

0.0233**     (0.0108)

-2,359

0.056

10.473

0.0122*     (0.0053)

0.0324***    (0.0071)

-0.0080***   (0.0019)

9*10-5***   (2*10-5)

Ref.

0.0190**    (0.0089)

0.0517***    (0.0128)

0.0203**    (0.0106)

0.0208**    (0.0107)

0.0029NS   (0.0081)

Ref.

0.0012NS   (0.0083)

-0.0270***   (0.0064)

-0.0169**    (0.0065)

Ref.

-0.0098NS   (0.0075)

0.0062NS   (0.0068)

Ref.

0.0139*     (0.0088)

0.0176*     (0.0102)

-2,338
0.064
10.473

Notes: ***, ** and * denote significance at the 1%, 5% and 10% level respectively. Each equation also includes a constant.
Marginal effect are (a) for the age variables:
βΦ(βX) with Φ() the normal cumulative distribution function and β the
vector of estimated coefficients and (b) for each dummy explanatory variable
Xk: Φ(βX-k + βk) - Φ(β X-k) with X-k
the vector of explanatory variables except Xk . X is taken at the sample mean.

Figures in brackets give standard errors of the marginal effects calculated by the delta method.

Table 4: Marginal effects from the three simple probits

29



More intriguing information

1. The name is absent
2. The name is absent
3. The name is absent
4. The Functions of Postpartum Depression
5. Types of Tax Concessions for Promoting Investment in Free Economic and Trade Areas
6. The purpose of this paper is to report on the 2008 inaugural Equal Opportunities Conference held at the University of East Anglia, Norwich
7. PRIORITIES IN THE CHANGING WORLD OF AGRICULTURE
8. The name is absent
9. Optimal Vehicle Size, Haulage Length, and the Structure of Transport Costs
10. Developments and Development Directions of Electronic Trade Platforms in US and European Agri-Food Markets: Impact on Sector Organization