Sadness |
Near (0, 1, 2) |
Conformity_______ |
Near (0.5, 0.5, 2) |
Ecstasy |
Near (1, 0.5, 0.3) |
Rage |
Near (0.4, 1, 1.5) |
Pride |
Near (1, 0, 1.5) |
Shame__________ |
Near (0, 1, 1.5) |
Anger |
Near (0, 1, 2.5) |
Jealousy |
Near (1, 0.8, 0) |
Lust |
Near (0.8, 0.3, 2.7) |
Sorrow |
Near (0, 1, 0.5) |
Revenge__________ |
Near (0.5, 1, 0.5) |
Tenderness_______ |
Near (1, 0.2, 2.3) |
Enthusiasm |
Near (1, 0, 1.3) |
Surprise |
Near (0.8, 0.8, 2) |
Tabela 1. Emogoes representadas com o modelo. (In: GERSHENSON, 1999,
p.44-45)
Determinado o ponto onde se situa cada emogao, Gershenson define um
espago tridimensional, uma esfera de raio arbitrario em torno de cada ponto.
Assim, "se a distancia de A para Xe menor que ou igual a 0.1, A e considerado
como pertencente a emogao X. Entao, conforme a distancia aumente, A e
considerado ainda pertencente a emogao X, mas em menor grau, ate que,
finalmente, ele nao tenha nenhum grau de X" (Gershenson, 1999). O conjunto
de equagoes utilizado e o seguinte:
rl→∣X-A∣≤Ojl
< l-(10x(∣X -A∣-0jl))→ O,1<∣X-A∣<0j2 (5)
[θ→Oj2≤∣X-A∣
More intriguing information
1. A Unified Model For Developmental Robotics2. Developing vocational practice in the jewelry sector through the incubation of a new ‘project-object’
3. Strategic monetary policy in a monetary union with non-atomistic wage setters
4. Biological Control of Giant Reed (Arundo donax): Economic Aspects
5. Making International Human Rights Protection More Effective: A Rational-Choice Approach to the Effectiveness of Ius Standi Provisions
6. Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change
7. The name is absent
8. What Lessons for Economic Development Can We Draw from the Champagne Fairs?
9. WP 1 - The first part-time economy in the world. Does it work?
10. The name is absent