12
A.P. Kirilyuk
References
[1] Losa GA, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and Medicine.
Basel: Birkhauser, 1994.
[2] Losa GA, Nonnenmacher TF, Merlini D, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. II. Basel: Birkhauser, 1998.
[3] Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. III. Basel: Birkhauser, 2002.
[4] Mandelbrot B. The Fractal Geometry of Nature. San Francisco: Freeman, 1982.
[5] Mandelbrot B. Fractales, hasard et finance, 1959-1997. Paris: Flammarion, 1998.
[6] Feder J. Fractals. New York: Plenum Press, 1988.
[7] Peintgen H-O, Jurgens H, Saupe D. Chaos and Fractals. New Frontiers of Science.
New York: Springer-Verlag, 1992.
[8] Nakayama T, Yakubo K, Orbach RL. Dynamical properties of fractal networks:
scaling, numerical simulations, and physical realisations. Rev Mod Phys 1994; 66:
381-443.
[9] Kirilyuk AP. Universal Concept of Complexity by the Dynamic Redundance
Paradigm: Causal Randomness, Complete Wave Mechanics, and the Ultimate
Unification of Knowledge. Kiev: Naukova Dumka, 1997. For a non-technical
review see also: e-print physics/9806002 at http://arXiv.org.
[10] Kirilyuk AP. The universal dynamic complexity as extended dynamic fractality:
causally complete understanding of living systems emergence and operation. In:
Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. III. Basel: Birkhauser, 2002; 271-84. E-print physics/0305119.
[11] Kirilyuk AP. Dynamically Multivalued, Not Unitary or Stochastic, Operation of
Real Quantum, Classical and Hybrid Micro-Machines. E-print physics/0211071 at
http://arXiv.org.
[12] Kirilyuk AP. Universal symmetry of complexity and its manifestations at
different levels of world dynamics. Proceedings of Institute of Mathematics of
NAS of Ukraine 2004; 50: 821-8. E-print physics/0404006 at http://arXiv.org.
[13] Kirilyuk AP. Dynamically multivalued self-organisation and probabilistic
structure formation processes. Solid State Phenomena 2004; 97-8: 21-6. E-print
physics/0405063 at http://arXiv.org.
[14] Kirilyuk AP. Theory of charged particle scattering in crystals by the generalised
optical potential method. Nucl Instr Meth B 1992; 69: 200-231.
[15] Kirilyuk AP. Quantum chaos and fundamental multivaluedness of dynamical
functions. Annales de la Fondation Louis de Broglie 1996; 21: 455-480. E-prints
quant-ph/9511034 - 36 at http://arXiv.org.
[16] Dederichs PH. Dynamical diffraction theory by optical potential methods. In:
Ehrenreich H, Seitz F, Turnbull D, eds. Solid State Physics, Vol. 27. New York:
Academic Press, 1972; 136-237.
[17] Taft RG, Mattick JS. Increasing biological complexity is positively correlated with
the relative genome-wide expansion of non-protein-coding DNA sequences. E-
print q-bio.GN/0401020 at http://arXiv.org.
[18] Horgan J. The End of Science. Facing the Limits of Knowledge in the Twilight of
the Scientific Age. Helix: Addison-Wesley, 1996.
[19] Kline M. Mathematics: The Loss of Certainty. New York: Oxford University
Press, 1980.