The name is absent



12


A.P. Kirilyuk

References

[1] Losa GA, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and Medicine.
Basel: Birkhauser, 1994.

[2] Losa GA, Nonnenmacher TF, Merlini D, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. II. Basel: Birkhauser, 1998.

[3] Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. III. Basel: Birkhauser, 2002.

[4] Mandelbrot B. The Fractal Geometry of Nature. San Francisco: Freeman, 1982.

[5] Mandelbrot B. Fractales, hasard et finance, 1959-1997. Paris: Flammarion, 1998.

[6] Feder J. Fractals. New York: Plenum Press, 1988.

[7] Peintgen H-O, Jurgens H, Saupe D. Chaos and Fractals. New Frontiers of Science.
New York: Springer-Verlag, 1992.

[8] Nakayama T, Yakubo K, Orbach RL. Dynamical properties of fractal networks:
scaling, numerical simulations, and physical realisations. Rev Mod Phys 1994; 66:
381-443.

[9] Kirilyuk AP. Universal Concept of Complexity by the Dynamic Redundance
Paradigm: Causal Randomness, Complete Wave Mechanics, and the Ultimate
Unification of Knowledge. Kiev: Naukova Dumka, 1997. For a non-technical
review see also: e-print physics/9806002 at
http://arXiv.org.

[10] Kirilyuk AP. The universal dynamic complexity as extended dynamic fractality:
causally complete understanding of living systems emergence and operation. In:
Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, eds. Fractals in Biology and
Medicine, Vol. III. Basel: Birkhauser, 2002; 271-84. E-print physics/0305119.

[11] Kirilyuk AP. Dynamically Multivalued, Not Unitary or Stochastic, Operation of
Real Quantum, Classical and Hybrid Micro-Machines. E-print physics/0211071 at
http://arXiv.org.

[12] Kirilyuk AP. Universal symmetry of complexity and its manifestations at
different levels of world dynamics. Proceedings of Institute of Mathematics of
NAS of Ukraine 2004; 50: 821-8. E-print physics/0404006 at
http://arXiv.org.

[13] Kirilyuk AP. Dynamically multivalued self-organisation and probabilistic
structure formation processes. Solid State Phenomena 2004; 97-8: 21-6. E-print
physics/0405063 at
http://arXiv.org.

[14] Kirilyuk AP. Theory of charged particle scattering in crystals by the generalised
optical potential method. Nucl Instr Meth B 1992; 69: 200-231
.

[15] Kirilyuk AP. Quantum chaos and fundamental multivaluedness of dynamical
functions. Annales de la Fondation Louis de Broglie 1996; 21: 455-480. E-prints
quant-ph/9511034 - 36 at
http://arXiv.org.

[16] Dederichs PH. Dynamical diffraction theory by optical potential methods. In:
Ehrenreich H, Seitz F, Turnbull D, eds. Solid State Physics, Vol. 27. New York:
Academic Press, 1972; 136-237.

[17] Taft RG, Mattick JS. Increasing biological complexity is positively correlated with
the relative genome-wide expansion of non-protein-coding DNA sequences. E-
print q-bio.GN/0401020 at
http://arXiv.org.

[18] Horgan J. The End of Science. Facing the Limits of Knowledge in the Twilight of
the Scientific Age. Helix: Addison-Wesley, 1996.

[19] Kline M. Mathematics: The Loss of Certainty. New York: Oxford University
Press, 1980.



More intriguing information

1. Mergers and the changing landscape of commercial banking (Part II)
2. A Hybrid Neural Network and Virtual Reality System for Spatial Language Processing
3. Environmental Regulation, Market Power and Price Discrimination in the Agricultural Chemical Industry
4. LABOR POLICY AND THE OVER-ALL ECONOMY
5. APPLICATIONS OF DUALITY THEORY TO AGRICULTURE
6. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia
7. Short report "About a rare cause of primary hyperparathyroidism"
8. The Global Dimension to Fiscal Sustainability
9. Barriers and Limitations in the Development of Industrial Innovation in the Region
10. Does Presenting Patients’ BMI Increase Documentation of Obesity?