research articles
Sweet et al.
(3) Sweet, S. M. M.; Cooper, H. J. Electron capture dissociation in the
analysis of protein phosphorylation. Expert Rev. Proteomics 2007,
4 (2), 149-159.
(4) Nielsen, M. L.; Savitski, M. M.; Zubarev, R. A. Improving protein
identification using complementary fragmentation techniques in
Fourier transform mass spectrometry. Mol. Cell. Proteomics 2005,
4 (6), 835-845.
(5) Sweet, S. M. M.; Bailey, C. M.; Cunningham, D. L.; Heath, J. K.;
Cooper, H. J. Large-scale localization of protein phosphorylation
by use of electron capture dissociation mass spectrometry. Mol.
Cell. Proteomics 2009, 8 (5), 904-912.
(6) Falth, M.; Savitski, M. M.; Nielsen, M. L.; Kjeldsen, F.; Andren, P. E.;
Zubarev, R. A. Analytical utility of small neutral losses from
reduced species in electron capture dissociation studied using
SwedECD database. Anal. Chem. 2008, 80 (21), 8089-8094.
(7) Cooper, H. J.; Hudgins, R. R.; Hakansson, K.; Marshall, A. G.
Characterization of amino acid side chain losses in electron
capture dissociation. J. Am. Soc. Mass Spectrom. 2002, 13 (3), 241-
249.
(8) Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A.
Hydrogen rearrangement to and from radical z fragments in
electron capture dissociation of peptides. J. Am. Soc. Mass Spec-
trom. 2007, 18 (1), 113-120.
(9) Good, D. M.; Wenger, C. D.; McAlister, G. C.; Bai, D. L.; Hunt, D. F.;
Coon, J. J. Post-acquisition ETD spectral processing for increased
peptide identifications. J. Am. Soc. Mass Spectrom. 2009, 20 (8),
1435-1440.
(10) Beausoleil, S. A.; Villen, J.; Gerber, S. A.; Rush, J.; Gygi, S. P. A
probability-based approach for high-throughput protein phos-
phorylation analysis and site localization. Nat. Biotechnol. 2006,
24 (10), 1285-1292.
(11) Scherl, A.; Tsai, Y. S.; Shaffer, S. A.; Goodlett, D. R. Increasing
information from shotgun proteomic data by accounting for
misassigned precursor ion masses. Proteomics 2008, 8 (14), 2791-
2797.
(12) Sweet, S. M. M.; Cooper, H. J., On-line liquid chromatography
electron capture dissociation for the characterisation of phospho-
rylation sites in proteins. In Methods in Molecular Biology; de
Graauw, M., Ed.; Humana Press Inc.: Totowa, NJ: 2009; Vol. 527,
pp 191-199.
(13) Sweet, S. M. M.; Creese, A. J.; Cooper, H. J. Strategy for the
identification of sites of phosphorylation in proteins: Neutral loss
triggered electron capture dissociation. Anal. Chem. 2006, 78 (21),
7563-7569.
(14) Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka,
J. E. P.; Coon, J. J. Supplemental activation method for high-
efficiency electron-transfer dissociation of doubly protonated
peptide precursors. Anal. Chem. 2007, 79 (2), 477-485.
(15) Brosch, M.; Swamy, S.; Hubbard, T.; Choudhary, J. Comparison
of Mascot and X!Tandem performance for low and high accuracy
mass spectrometry and the development of an adjusted Mascot
threshold. Mol. Cell. Proteomics 2008, 7 (5), 962-970.
(16) Tsybin, Y. O.; He, H.; Emmett, M. R.; Hendrickson, C. L.; Marshall,
A. G. Ion activation in electron capture dissociation to distinguish
between N-terminal and C-terminal product ions. Anal. Chem.
2007, 79 (20), 7596-7602.
(17) Cooper, H. J.; Hakansson, K.; Marshall, A. G.; Hudgins, R. R.;
Haselmann, K. F.; Kjeldsen, F.; Budnik, B. A.; Polfer, N. C.; Zubarev,
R. A. Letter: The diagnostic value of amino acid side-chain losses
in electron capture dissociation of polypeptides. Comment on:
“Can the (Mdot-X) region in electron capture dissociation provide
reliable information on amino acid composition of polypeptides?”,
Eur. J. Mass Spectrom. 8, 461 (2002). Eur. J. of Mass Spectrom. 2003,
9 (3), 221-222.
(18) Kandasamy, K.; Pandey, A.; Molina, H. Evaluation of several MS/
MS search algorithms for analysis of spectra derived from electron
transfer dissociation experiments. Anal. Chem. 2009, 81 (17),
7170-7180.
PR9008282
5484 Journal of Proteome Research • Vol. 8, No. 12, 2009