The Euler-Lagrange equation for a segment β is given by
lnp^(r) +
____ 1 m {^r'} p
L∈Γ(0) 7=1 7' J
Ps*9{^
δ∖ny^tact{{pβe9^}∖
δps0e9(r)
dr I
δβA^ , δβA^ττ _
δpf^(r) + δpsβe∖r) 0
(4.47)
Eqn. 4.47 can be further written as
ln⅛'9(r) + £ lnX'(r) = ¾(r) +‰, - vβ≈<(r)), (4.48)
A∈Γ(<j)
where D0(r) is given by
P7(rι)
^lny2Xtaci[{⅛es(r1)}]
<s(r)
δβAεx
,hs
¼es(r)
δβAATT
<s(r)
(4.49)
Physically, lnp^es(r) + ∑2a∈γ<*3) hiʌ^(r) — hιpθeg(r), where Poe,s(r) ɪɛ the density of
monomers [58],
since bonding at a site on a segment is assumed independent of bonding at the other
sites on the same segment. For the first segment,
ÆW = ∕>ΓW ∏ ⅛.
A∈Γ(0)
(4.50)
lnp1(∏) + ln%iυ(r1) = A(rι) + β(μι - VΓ(∏)), (4.51)
109