substance |
[g/moɪ] |
m |
σ |
e∕k |
AAD% |
T range | |
pvap |
Pliq | ||||||
propane |
44.096 |
2.0000 |
3.6189 |
209.56 |
0.37 |
0.68 |
85 - 523 |
butane |
58.123 |
2.3327 |
3.7019 |
224.65 |
0.9 |
0.74 |
135 -573 |
pentane |
72.146 |
2.6900 |
3.7699 |
232.49 |
1.24 |
0.32 |
143 - 569 |
hexane |
86.177 |
2.9938 |
3.8441 |
240.76 |
0.38 |
0.29 |
177 - 503 |
heptane |
100.203 |
3.2943 |
3.8998 |
247.26 |
1.5 |
0.69 |
182 - 623 |
octane |
114.231 |
3.6437 |
3.9321 |
249.92 |
0.77 |
0.47 |
216 - 569 |
nonane |
128.25 |
3.9737 |
3.9662 |
252.7 |
0.54 |
0.3 |
219 - 595 |
decane |
142.85 |
4.3002 |
3.9936 |
254.92 |
0.76 |
1.94 |
243 - 617 |
undecane |
156.312 |
4.6019 |
4.034 |
257.66 |
1.32 |
0.52 |
247 - 639 |
dodecane |
170.338 |
4.9021 |
4.0627 |
259.82 |
0.84 |
0.47 |
263 - 658 |
tridecane |
184.365 |
5.2460 |
4.0872 |
260.38 |
1.11 |
1.028 |
267 - 675 |
tetradecane |
198.392 |
5.4831 |
4.1254 |
263.83 |
2.13 |
0.86 |
279 - 693 |
pentadecane |
212.419 |
5.7745 |
4.1418 |
265.31 |
2.21 |
0.69 |
283 - 708 |
hexadecane |
226.446 |
6.1259 |
4.1459 |
265.02 |
1.24 |
1.48 |
291 - 723 |
heptadecane |
240.473 |
6.4177 |
4.1598 |
266.34 |
1.81 |
1.85 |
295 - 736 |
octadecane |
254.5 |
6.6492 |
4.1832 |
268.52 |
1.82 |
1.31 |
301 - 747 |
nonadecane |
268.527 |
6.9544 |
4.2025 |
268.97 |
1.73 |
1.46 |
305 - 758 |
eicosane |
282.553 |
7.4000 |
4.2103 |
267.05 |
3.57 |
1.57 |
309 - 775 |
Table 2.2: Pure component parameters for n-alkane series. The data used for parameter
regression were the same as in Gross and Sadowski [48].
Figures 2.5 a and b compare the critical temperatures and pressures for the n-
alkane series from n-C3 to n-C20, predicted from the new EOS and PC-SAFT with
the experimental critical constants. While both equations of state over-predict the
critical temperature and pressure, the critical constants predicted by the new EOS
are in better agreement with the experimental data, especially for longer n-alkanes.
The improvement of density predictions over PC-SAFT in the critical region is also
illustrated in figure 2.4. Like other classical equations of state, the new EOS can-
not describe accurately the singular asymptotic behavior of fluids, which is marked
by long-range density fluctuations. Several methodologies for incorporating critical
scaling into different versions of SAFT have been recently proposed [86, 87] in order
49