The name is absent



116


adjacent weak compartment we find

'l(awυ)2 , awW


.2 (∆x)2   4(∆x}2


a‰-l
faT - a-w


:NW
w


,2


2 (∆τ)2
'(aww)2


ɪ
aw

4(∆τ)2

aW Z


Nw — 1

LW


(∆rr)2   2(∆τ)2


‰-l

LW


= ‰,l√τ

Now we are ready to write the complete coupled strong-weak system. Letting

1 1 1

c =----jʊ- and cw = ———∑τ-

αafr       w 2Raa%-
and defining the coordinate vectors

eNw          and eNr ∈ Rλ

we can write the coupling matrices as

Zw = e.‰,3(⅛r⅛) ∈ R^,∙×^,-<m+1>

7   Cw ,,   („  erΓ c τpJVw(m+l)×Ns

ls — -^rXw,i\.eNiueNT) ∈ K '   '

and let HsRn≡×7v be the Hines matrix for the strong part and Q be the quasi-active
matrix for the weak part. Then the coupled strong-weak “Hines” matrix is



More intriguing information

1. The name is absent
2. Modelling the Effects of Public Support to Small Firms in the UK - Paradise Gained?
3. Program Semantics and Classical Logic
4. The voluntary welfare associations in Germany: An overview
5. Studying How E-Markets Evaluation Can Enhance Trust in Virtual Business Communities
6. Towards a framework for critical citizenship education
7. The name is absent
8. The name is absent
9. Towards Learning Affective Body Gesture
10. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.