116
adjacent weak compartment we find
'l(awυ)2 , awW
.2 (∆x)2 4(∆x}2
a‰-l
faT - a-w
:NW
w
,2
2 (∆τ)2
'(aww)2
ɪ
aw
4(∆τ)2
aW Z
Nw — 1
LW
(∆rr)2 2(∆τ)2
‰-l
LW
= ‰,l√τ
Now we are ready to write the complete coupled strong-weak system. Letting
1 1 1
c =----jʊ- and cw = ———∑τ-
2Λαafr w 2Raa%-
and defining the coordinate vectors
eNw ∈ and eNr ∈ Rλ∖
we can write the coupling matrices as
Zw = e.‰,3(⅛r⅛) ∈ R^,∙×^,-<m+1>
7 Cw ,, („ erΓ ∖ c τpJVw(m+l)×Ns
ls — -^rXw,i\.eNiueNT) ∈ K ' '
and let Hs ∈ Rn≡×7v≈ be the Hines matrix for the strong part and Q be the quasi-active
matrix for the weak part. Then the coupled strong-weak “Hines” matrix is
More intriguing information
1. Educational Inequalities Among School Leavers in Ireland 1979-19942. Nach der Einführung von Arbeitslosengeld II: deutlich mehr Verlierer als Gewinner unter den Hilfeempfängern
3. Visual Artists Between Cultural Demand and Economic Subsistence. Empirical Findings From Berlin.
4. fMRI Investigation of Cortical and Subcortical Networks in the Learning of Abstract and Effector-Specific Representations of Motor Sequences
5. ‘Goodwill is not enough’
6. The name is absent
7. Implementation of Rule Based Algorithm for Sandhi-Vicheda Of Compound Hindi Words
8. The name is absent
9. Testing Hypotheses in an I(2) Model with Applications to the Persistent Long Swings in the Dmk/$ Rate
10. IMMIGRATION AND AGRICULTURAL LABOR POLICIES