143
Table B.l: Uniform channel model and kinetics, which corresponds to the Hodgkin-Huxley
squid giant axon parameters at 6.3oC (Hodgkin and Huxley, 1952).
Ionic Current Gating Variables G(x) (mS∕cm2) E (mV)
Leak 0.3 INa m3, h 120 Iκ ni 36 |
-54.3 56 |
Gating Var. |
a |
_______β_______ |
T |
Woo |
0.1(v+40) |
4exp(- (υ + 65)/18) |
1 |
a | |
772 |
1—exp(-0.1(v÷40)) |
a+β |
a+β | |
h |
0.07exp(-(υ ÷ 65)/20) |
____________ι____________ |
1 |
a |
l+exp(0.1(~ 35—υ)) |
a+β |
a+β | ||
0.01(τι+55) |
∣exp(-(u + 65)/80) |
1 |
a | |
TL |
1—exp(-0.1(-υ+55)) |
α+∕3 |
a+β |
Table B.2: Non-uniform channel model and kinetics, Lv ɑ. and ⅛ use Hodgkin-Huxley
type kinetics, while Ia uses Connor-Stevens type kinetics and a spatial distribution of
conductance based on Hoffman’s work. For G(rr), x is measured in pm from the soma.
Note that the Ia channel kinetics do not have a and β functions explicitly defined (Connor
and Stevens, 1971) (Hoffman et al., 1997).
Ionic Current |
Gating Variables |
G{x) (mS∕cm2) |
E (mV) |
Leak |
0.3 |
-47 | |
Ino. |
m3, h |
60 |
55 |
Ik |
ni |
20 |
-72 |
Ia____________ |
α3, b |
yy(0.2 + 0.002τ) |
-75 |
Gating Var. |
a β τ woo |
m |
1—0r⅛299Λbiω 15.2exp(-0.0556(v + 54.7)) ɪ ɪ 1—exp(-(t∕÷29.7)/10) ∖ 1 √/ α+p α+∕3 0.266exp(-0.05(v + 48)) ⅛¾4⅛7i°> ⅛ ⅛ |
n |
!-.,“pÎXS/.o) 0.25exp(-0.0125(v + 55.7)) ⅛ ⅛ |
Gating Var.
W00
∩ 3632 __1158_______
U.OOO^ 1- 1+exp(0.0497(t)+55.96))
1 24 3__2∙678_______
1.^⅛-Γ ι+eχp(0.0624(v+50))
0.0761exp(0.0314(t>+94.22)) λ ^3
l+exp(0.0346(v+1.17)) )
/ ∖ 4
/ 1 ʌ
l+exp(0.0688(v+53.3))