143
Table B.l: Uniform channel model and kinetics, which corresponds to the Hodgkin-Huxley
squid giant axon parameters at 6.3oC (Hodgkin and Huxley, 1952).
Ionic Current Gating Variables G(x) (mS∕cm2) E (mV)
Leak 0.3 INa m3, h 120 Iκ ni 36 |
-54.3 56 |
Gating Var. |
a |
_______β_______ |
T |
Woo |
0.1(v+40) |
4exp(- (υ + 65)/18) |
1 |
a | |
772 |
1—exp(-0.1(v÷40)) |
a+β |
a+β | |
h |
0.07exp(-(υ ÷ 65)/20) |
____________ι____________ |
1 |
a |
l+exp(0.1(~ 35—υ)) |
a+β |
a+β | ||
0.01(τι+55) |
∣exp(-(u + 65)/80) |
1 |
a | |
TL |
1—exp(-0.1(-υ+55)) |
α+∕3 |
a+β |
Table B.2: Non-uniform channel model and kinetics, Lv ɑ. and ⅛ use Hodgkin-Huxley
type kinetics, while Ia uses Connor-Stevens type kinetics and a spatial distribution of
conductance based on Hoffman’s work. For G(rr), x is measured in pm from the soma.
Note that the Ia channel kinetics do not have a and β functions explicitly defined (Connor
and Stevens, 1971) (Hoffman et al., 1997).
Ionic Current |
Gating Variables |
G{x) (mS∕cm2) |
E (mV) |
Leak |
0.3 |
-47 | |
Ino. |
m3, h |
60 |
55 |
Ik |
ni |
20 |
-72 |
Ia____________ |
α3, b |
yy(0.2 + 0.002τ) |
-75 |
Gating Var. |
a β τ woo |
m |
1—0r⅛299Λbiω 15.2exp(-0.0556(v + 54.7)) ɪ ɪ 1—exp(-(t∕÷29.7)/10) ∖ 1 √/ α+p α+∕3 0.266exp(-0.05(v + 48)) ⅛¾4⅛7i°> ⅛ ⅛ |
n |
!-.,“pÎXS/.o) 0.25exp(-0.0125(v + 55.7)) ⅛ ⅛ |
Gating Var.
W00
∩ 3632 __1158_______
U.OOO^ 1- 1+exp(0.0497(t)+55.96))
1 24 3__2∙678_______
1.^⅛-Γ ι+eχp(0.0624(v+50))
0.0761exp(0.0314(t>+94.22)) λ ^3
l+exp(0.0346(v+1.17)) )
/ ∖ 4
/ 1 ʌ
l+exp(0.0688(v+53.3))
More intriguing information
1. KNOWLEDGE EVOLUTION2. Manufacturing Earnings and Cycles: New Evidence
3. LABOR POLICY AND THE OVER-ALL ECONOMY
4. The name is absent
5. THE CO-EVOLUTION OF MATTER AND CONSCIOUSNESS1
6. The role of statin drugs in combating cardiovascular diseases
7. The name is absent
8. The name is absent
9. The name is absent
10. Existentialism: a Philosophy of Hope or Despair?