55
250 random strong inputs, Vth = [22 22 16 14], τ,θf = 4 ms
æ × 9 ®® 9® ×ββ)S8×8 ®xx ®x ®®x x )9×3<30
20 -× ×× ® к ®D ® × × ®<® ×K)× ×× ®юс ® ©c ×× x®9 ® ® ©
×βB9 × ® ®3 × ×X3 ®® ×SSB 9® × ® × ® × x®® ©<
3 ® ®x x XX ® × ® )® × ® ® O ®x ® x® x®
®© × × QB®® XX ® x x® × × x® ®® O ® 5®®
× 93 × 9 ® ® ® x ® >® × *3 © ® ×9 ® ®x® xQ®
15*® 9× ®x9 Q® ®x QS> ×9 9∞Φ9O× ®9 9× CX
<9×99O××××× 9 × 99 × ®® ® x® 99 ×O× ×
®($38xO® ×× ®® × ® x® x® × 9КЮ × × ® ® QB
О
jg
ɔ
E
ω
>O9× ® © ® × ®X3®9 © 9 x® × ® × 9 43 9 9
3 ×9β3Q0 9 ©ХЭ®®® XX 93B XX × ® Cβ×>Φ ®x ×
10 - © ®x®9 × 9 99 ®®X ® ® 9 999 x® 93D9 *9 9 XXX
X3 © × ® x® XX <3® QB® 9 X3 ®x ®x® × ®
× ®x × × ® 43 ® Ю 999 × 9 ® ®*O ® XX ® 9® 9
φc ®9 × 9 x9X33B× ××× ®x3x O 9 × 9 ® ×
® x® × ® ×xx® × x®<® × 9 9 ® ® >® ® ®xx 9 OQ × 9
5 3 x®x O 9 © β3 x 9 >99® ® © × 9 9 9 9® ×
® ® × 9 × хЭДЗВх X3D × 9 9 093 9 9 × QO O × 9® ХЭ ×
× ® ×X3× × © ®x®x × ®9® 9 x ®x® × × 9 O 99
3× 9 x X3® ×(S) 999 × 9 ×× 993 × 9 × × ×X8B××
× ®9 xx ® 99 × QD×X39× ×× 9 ®M3 9 9 9× ® × (S3 ×
0-------------------------l-------------------------1-------------------------1-------------------------1-------------------------1-------------------------1-------------------------1-------------------------1-------------------------1-------------------------1
0 100 200 300 400 500 600 700 800 900 1000
Time (ms)
1250 random weak inputs, Vth = [22 22 16 14], τ = 4 ms
20- β8×βθ 8 8 8 ×
8 8 × >®
χ βa e e о ×e e a
β8 в × S × O x
a × a
15- × в O × X
a a<a a × × ×
⅝ a × × >a × a
a ×e × 9 a ×
о
c5
ɔ
E
ω
× ×a × a κ a
10 - 9 90 × a × о a
9 9 OO 99 O ×
a a x e >a e
8x88 9
9 × × x 8
5 - 68 8 8 × 88
O 9 × a 9
39 9 9 9 9 9 ×
se x x3 × о ee ×
seæ о e a о a × ×
QI--------------------1--------------------ɪ--------------------L------------------1--------------------ɪ--------------------1--------------------1--------------------1--------------------1-------
1000
0 100 200 300 400 500 600 700 800 900
Time (ms)
Figure 2.16: Raster diagrams showing spikes computed for the nonlinear system (×,s) and the re-
duced system (o’s) for A) “strong” and B) “weak” input cases demonstrate that a variable-threshold,
multi-site IAF mechanism improves accuracy of spike generation. The same input patterns as used
for Figure 2.14 were applied to the forked neuron, but this time voltages were observed at the soma
and the midpoints of each branch. Threshold values are given in §2.7.2. In total, the “strong” and
“weak” input simulations had match scores of 56% and 65%, respectively, and mismatch scores of
15% and 13%, respectively.
it accurately tracks the quasi-active response at several, say p, distinct locations.
Proper investigation of this issue would address the questions of optimal placement
of p observers, placement and calibration of threshold mechanisms at each site, and
the trade of accuracy for speed as p is increased. We offer here only empirical evidence
More intriguing information
1. Optimal Private and Public Harvesting under Spatial and Temporal Interdependence2. Problems of operationalizing the concept of a cost-of-living index
3. A Regional Core, Adjacent, Periphery Model for National Economic Geography Analysis
4. The name is absent
5. The name is absent
6. The name is absent
7. Return Predictability and Stock Market Crashes in a Simple Rational Expectations Model
8. On s-additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model
9. The name is absent
10. The name is absent