118
[30] Y. Park, L. Tian, and L. J. Wei. One- and two-sample nonparametric inference
procedures in the presence of a mixture of independent and dependent censoring.
Biostatistics, 7:252-267, 2006.
[31] L. Peng and J. P. Fine. Regression modeling of semi-competing risks data.
Biometrics, 63:96-108, 2007.
[32] R. Radcliffe. Effect of the gramm-leach-bliley act on financial ser-
vices. http://www.helium.com/items/302259-effect-of-the-gramm-leach-bliley-
act-on-financial-services, 2005.
[33] D. O. Scharfstein and J. M. Robins. Estimation of the failure time distribution
in the presence of informative censoring. Biometrika, 89:617-634, 2002.
[34] D. O. Scharfstein, J. M. Robins, W. Eddings, and A. Rotnitzky. Inference in ran-
domized studies with informative censoring and discrete time-to-event endpoints.
Biometrics, 57:404-413, 2001.
[35] F. Siannis. Applications of a parametric model for informative censoring. Bio-
metrics, 60:704-714, 2004.
[36] F. Siannis, J. Copas, and G. Lu. Sensitivity analysis for informative censoring
in parametric survival models. Biostatistics, 6:77-91, 2005.
[37] E. Slud. Nonparametric identifiability of marginal survival distributions in the
presence of dependent competing risks and a prognostic covariate, in Survival