Shi, J., Blundell, T.L., and Mizuguchi, K. (2001). FUGUE: sequence-structure homology
recognition using environment-specific substitution tables and structure-dependent gap penalties.
J. Mol. Biol. 310, 243-257.
Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T., and Jacobs, W.R., Jr. (1990). Isolation and
characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol.
Microbiol. 4, 1911-1919.
Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., Bansal,
G.P., Young, J.F., Lee, M.H., Hatfull, G.F., et al. (1991). New use of BCG for recombinant
vaccines. Nature 351, 456-460.
Takayama, K., Wang, C., and Besra, G.S. (2005). Pathway to synthesis and processing of
mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81-101.
Villeneuve, M., Kawai, M., Watanabe, M., Aoyagi, Y., Hitotsuyanagi, Y., Takeya, K., Gouda,
H., Hirono, S., Minnikin, D.E. and Nakahara, H. (2007). Conformational behavior of oxygenated
mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim. Biophys. Acta 1768,
1717-1726.
Walker, R.W., Prome, J.C., and Lacave, C.S. (1973). Biosynthesis of mycolic acids. Formation
of a C32 beta-keto ester from palmitic acid in a cell-free system of Corynebacterium diphtheriae.
Biochim. Biophys. Acta 326, 52-62.
Wick, L.Y., Wattiau, P., and Harms, H. (2002). Influence of the growth substrate on the mycolic
acid profiles of mycobacteria. Environ. Microbiol. 4, 612-616.
25