112
[25] Athanasios Kottas, Peter Müller, and Fernando Quintana. Nonparametric
Bayesian modeling for multivariate ordinal data. Journal of Computational and
Graphical Statistics, 14(3):610-625, 2005.
[26] Albert Y. Lo. On a class of Bayesian nonparametric estimates: I. Density esti-
mates. The Annals of Statistics, 12:351-357, 1984.
[27] Steven N. MacEachern. Estimating normal means with a conjugate style Dirich-
let process prior. Communications in Statistics: Simulation and Computation,
23:727-741, 1994.
[28] Steven N. MacEachern and Peter Müller. Estimating mixture of Dirichlet process
models. Journal of Computational and Graphical Statistics, 7:223-238, 1998.
[29] Noriyuki Masuda, Shunichi Negoro, Shinzoh Kudoh, Takahiko Sugiura, Kazuhiko
Nakagawa, Hideo Saka, Minoru Takada, Hisanobu Niitani, and Masahiro
Fukuoka. Phase i and pharmacologic study of docetaxel and irinotecan in ad-
vanced nonsmall-cell lung cancer. Journal of Clinical Oncology, 18:2996-3003,
2000.
[30] Peter McCullagh. Regression models for ordinal data. Journal of the Royal
Statistical Society, Series B: Methodological, 42:109-142, 1980.
[31] Robert McCulloch and Peter E. Rossi. An exact likelihood analysis of the multi-
nomial probit model. Journal of Econometrics, 64:207-240, 1994.
[32] Daniel McFadden. A method of simulated moments for estimation of discrete re-
sponse models without numerical integration (STMA V31 2344). Econometrica,
57:995-1026, 1989.
[33] Saurabh Mukhopadhyay and Alan E. Gelfand. Dirichlet process mixed general-
ized linear models. Journal of the American Statistical Association, 92:633-639,
1997.