47
Expression (3.10) tells us that the probability that θi differs from θj, for j ≠ i, is
ɑ/(ɑ + n — 1). Moreover, denoting with go the pdf corresponding to Go,
= + (3.ιι)
j≠i
The previous equation, conditional independence of æɪ,... ,xn given θ1,... ,θn and
Bayes theorem imply
p(θi I θ~i,x1, ...,Xn) oc p{xι,x2, ∙ ∙ ∙ ,xn I θi,θ~l)p(θi I θ~i)
<×^=1p(χj∖θj){ag0(θi) + ∑j^δθ.(θi)} (3.12)
OC ap(xi I θi)g0(θi) + ∑j≠ip(xi ∣ θj)δθj(θi).
Let p(xi) = ʃp(xi I θ)go(θ) dθ denote the marginal of xi under g0. Then
p(%i I θi)g0(θi) = Р^Хг I ^9°^p{xi) = p(θi I xi)p(xi),
P∖xi)
we get,
p{θi I θ~τ,x1,x2,.. .,xn) oc qiθgio(di) + '^Jqijδθj(θi), (3.13)
j≠i
where qio = ap(x-t) is the product of a and the marginal distribution p(xiy) of xi∙,
qij = p(xi I θj)∙, and g-to(θi) oc p(xi ∣ ftt)g0(6ti), the posterior distribution of θi given xi
under a Bayes model with prior ¾ ~ G0 and sampling model p(xl ∣ θi).
We observe that a random sample of size n: θγ,θ2,... ,θn of a DP can be equiva-
lently represented by the triplet (K,θ*,φ) where K is the number of distinct values
among the θ{, θ* = {θ↑,θ⅛,... ,θ*κ} are these distinct values, and φ are indicators
φ = (<^ι, φ2,..., φn), with φi — к if θt — θk. We refer to (K, θ*, φ) as a “configura-
tion.”
A configuration (West, 1990, MacEachern, 1994) classifies the data xn {aq,..., xn}
into K different clusters with n⅛ — ∣ φi — k} observations that share the com-
mon parameter θ*k. We use Sk to denote the ⅛-th cluster of observation indices,
Sk — {i I ψi — k}. In other words, a configuration is simply a partition of {1,..., n}
More intriguing information
1. The name is absent2. Cultural Neuroeconomics of Intertemporal Choice
3. Økonomisk teorihistorie - Overflødig information eller brugbar ballast?
4. The name is absent
5. Expectations, money, and the forecasting of inflation
6. Developments and Development Directions of Electronic Trade Platforms in US and European Agri-Food Markets: Impact on Sector Organization
7. Une Gestion des ressources humaines à l'interface des organisations : vers une GRH territoriale ?
8. Modeling industrial location decisions in U.S. counties
9. The Advantage of Cooperatives under Asymmetric Cost Information
10. The name is absent