The name is absent



54


bution,


P(φi = kyi, μ*-i,λ*-i, φ-i, K~i) = qik, for к = 0,.. ., K~i

where,

qi0 = со. Student ( yi m1, ~ k° , 2η1 ) ,
ψ1 k0 +1    /

qik = cnkiN(yi I μ*k, λ*k} for к = 1,..., K~i,

and c is a normalization constant such that qo ÷ ∙ ∙ + qχ-< — 1. Whenever we
sample
φi = 0, we generate a new observation (μ*, λ*) from

<7i0(∕Aλ*)= τv(μ*∣⅞⅛i,(fco + l)λ*)

× Ga (λ* ∣ τ∕1+ n√2,≠1 +        - mɪ)2)

and update, accordingly, the new configuration by K = K + 1 and φi = K ÷ 1.

(b) Given K and φ, generate a new set of parameters k, λ⅛) for к = 1,..., K from
the distribution

P(At⅛>λfcl yn,φ,K,k0l) =

∕v(> I ¾^,C⅛ + ¾μ*)

n
ko + nc


(mɪ - yfc)2]} ,


× Ga (λfc I 7?! + «fe/2, ≠ι + i [∑ιe(yi - г/t)2 +

where yk is the mean of the observations in Sk, that is yk = ∑iesknk-
(d) Updating the total mass parameter a:

1. Let a denote the currently imputed parameter value. Generate a latent
random variable
η ~Beta(α + 1, n).

2. Sample the new value of a from

ρ(a I K, η) =πηGa(a aa + K, ba log η')

+(1 - π^)Gα(α ∣ aa + K - 1, ba - log 77),

where,
7Γ7y aɑ I ʃf 1

1 - ⅞ n(ba - log η) '



More intriguing information

1. The name is absent
2. The name is absent
3. Improving Business Cycle Forecasts’ Accuracy - What Can We Learn from Past Errors?
4. Poverty transition through targeted programme: the case of Bangladesh Poultry Model
5. The Determinants of Individual Trade Policy Preferences: International Survey Evidence
6. Clinical Teaching and OSCE in Pediatrics
7. Regional differentiation in the Russian federation: A cluster-based typification
8. The name is absent
9. THE ANDEAN PRICE BAND SYSTEM: EFFECTS ON PRICES, PROTECTION AND PRODUCER WELFARE
10. Developmental changes in the theta response system: a single sweep analysis