For convenient reference, we state an obvious auxiliary result before proceeding to
the proof of Fact 2.
Lemma 1 Let real numbers σ, τ, z > 0 be given. The solution of the problem
max z1σ z2τ s.t. z1 ≥ 0, z2 ≥ 0, z1 + z2 = z
is z 1 = σ ∙ z, z = = -L- ∙ z, with value
1 σ+τ 2 σ+τ
μ ⅛ )σ ∙ μ . ) τ-σ+τ.
Proof of Fact 2
Let x = x1 + x2 and y = y1 + y2 denote the total amounts purchased by household
h. By Lemma 1, maximization of the Nash product u1αu1-α requires
x1 = |
--------∙ x, |
τ | |
x2= |
^x, σ* |
y1 = |
σ* + τ* ^ y, |
y2= |
σ* + τ* ^ y |
where
= αγ1,
τ = (1 - α)γ2,
σ* = α(1 - γ 1),
τ* = (1 - α)(1 - γ2).
Moreover, at the maximum,
_ _ _* _*
uαu1 -α = (σγ ɪ Y σ (_IL_ γ y
1 2 σ + τ σ + τ σ * + τ* σ * + τ*
with
δ = σ +τ = αγ1 +(1 - α)γ2 = γ2 + α(γ1 - γ2);
1 - δ = σ * +τ* = α(1 - γ1) + (1 - α)(1 - γ2) = 1 - γ2 - α(γ1 - γ2).
28