Nt +1
Vt
S ( Xt )
Yt
Ht - ξβEt [Π .. Ht+1]
Jt - ξβEt [Πζ+ι Jt+1]
1
MCt
1 + Rt
log At - log At
log Gt - log Gt
log MSt - log MS
log RPSt - log RPS
, Λ + Rn,Λ
log (.τ+‰ )
log Φ t
φEt [log Θ t+ι]
ξeV + (1 - ξe)Di
(1 + Rk,t)Qt-1 Kt - θt(1 + Rt)(Qt-1 Kt - Nt)
φx(χt - (1 + g))2
Ct + Gt + It
Yt Λ c,t
Yt Λ c,tMStMCt
ξ Π- -1 + (1 - ξ )
W[
Pt
Pt
1 + Rn,t-1
Π
Pa (log At-1 - log A1-1) + €A,t
Pg (log Gt-1 - log Gt-1) + <G,t
PMS(log MSt-1 - log MS) + €MS,t
Prps(log RpSt-1 - log rps) + CRPs,t
11 + Rn,t- ɪʌ n, θ t λ , φ t
P log ∖ 1 + Rn )+ θ log Θ + φ log ¥ + eMPS,t
logΠ t + τ log Φ t-1
logΘt - (1 - φ) log(Πt)
A.2 StEADy State
The steady state now changes to
Choose a functional form:
vi)
Nt = |
(1 - ξe ) D t ( (1 - ξe (1 + Rk)) |
1 + Rk = |
= (1+R ) s μ K- j |
Kt Y? W = Yt |
1 - α = ~p—ττ |
We obtain χ from econometric studies and we have data on the risk premium Θ = ∖+RR
and leverage (= borrowing/net worth)
KK -1 = ± -1
N nk
35