defining nk ≡ QN. Then we can set the scaling parameter k from (A.1) as
k = Θ n%
Then in the baseline steady state used to calibrate parameters, we put TVt = nkKt and
calibrate D from (A.1). Then the zero-inflation steady state and the calibrated k are given
by
1 + R
Q
Y:
%C2 ,t
(1 - %)(1 - h)
Ci ,t
αP w Ytw
Ph
Kt
Y w
Yt
1 + Rk
Θ
It
Y:
1
Nt
(1 + g )1+(σ-1)(1 -% )
β
Π = 1
(1 - c)(ht√lt)αKt1 -α
Wt
Wth
Wt
1 — α
Rk + δ
(1 + R)Θ
'=k ' v )-χ
( δ + g ) Kt
Ct + -I + G t
1 P w
1-1 p
r (1 — ξe ) D t
nk t (1 — ξe (1 + Rk))
B SuMMARy of Two-Sector Model
B.1 DyNAMic Model
λi ,t
Л C ι ,t
Л L ι i,t
Л C ι ,t
л(ci,t, LiF,t, Liɪ,t)
W1-% )(1 -σ )(r. τβ (1 -σ ) i ∕rι % %τ- (1 -σ )ʌ ∣
C1 ,t (nF,tLiF,t + (1 - nF,t)L11,t ) - 1
(1 y∣M1 -%)(1 -σ)-1(∏ %β(1 -σ) _i_ Λι %, ∖τ-(1 -σ)!
(1 - %)C1 ,t (nF,tL 1 F,t + (1 - nF,t)L11,t )
%ci 1t-%)(1 -σ)(Li,t)%(1 -σ)-1 ; i = I, F
βEt [(1 + Rt+1)лc 1 ,t+i]
36