Gender stereotyping and wage discrimination among Italian graduates



6

our data set by considering all variables statistically and economically significant in explaining the
wage gap (Tab. 2-9).

Table 2. OLS estimation results of the earnings equation for employees (male and female samples)

Variable

Earnings equation (employees)

Female

Male

Coefficient

T-value

Coefficient

T-value

CONSTANT

6.451078

80.249

6.516929

89.401

Educational performance___________________

0.000950

4.031

0.001423

5.301

lambda________________________________

0.383831

6.319

0.414517

7.583

experience________________________________

-0.036356

-6.557

0.016100

1.465

experience2_______________________________

0.004010

5.722

-0.001348

-1.141

Sciences________________________________

0.189980

4.621

0.075470

2.594

Pharmacy____________________________

0.290410

6.725

0.150891

5.120

Natural sciences____________________________

0.130703

3.820

0.062717

1.939

Engineering_______________________________

0.360510

7.515

0.253378

7.238

Architecture___________________________________

0.183003

3.857

0.121772

3.219

Agricultural studies___________________________

0.138144

3.090

0.058937

1.561

Economics, business and statistics___________

0.246893

6.207

0.168118

5.653

Political sciences and sociology______________

0.203020

4.692

0.074503

2.384

Law________________________________

0.075950

2.721

0.042657

1.507

Humanities________________________________

0.131889

3.114

-0.077757

-2.105

Foreign languages_________________________

0.162961

3.879

0.016601

0.391

Teachers college__________________________

0.111559

2.432

0.056077

1.162

Psychology______________________________

0.082282

1.645

0.043418

0.979

Hours worked (Q2 21)____________________

0.008788

8.024

0.007432

6.449

University of North____________________________

-0.052636

-3.973

-0.011993

-0.804

University of Center_________________________

-0.010915

-0.766

0.043994

2.943

d Liceo_____________________________________

-0.017863

-1.904

0.002172

0.235

d Previously entered another degree course

0.005927

0.490

0.012281

0.894

d Studied in the hometown__________________

0.000538

0.068

0.003824

0.440

d Moved to attend university_________________

0.034356

3.784

0.032285

3.018

d Working student_________________________

0.096551

7.163

0.076887

6.731

Training_______________________________________

-0.090338

-6.441

-0.107812

-7.538

Married_____________________________________

0.005629

0.685

0.080510

6.880

Children____________________________________

-0.009754

-0.620

0.091021

4.602

d Father’s university degree_________________

0.030699

2.294

0.007577

0.509

d Father’s high school degree________________

0.018705

1.967

0.004630

0.421

d Mother’s degree_________________________

-0.002357

-0.162

0.009058

0.567

d High school______________________________

-0.005666

-0.598

0.011621

1.083

d Father’s occupation: manager_____________

0.015552

1.036

0.030424

1.903

d Father’s occupation: executive cadre_______

-0.003928

-0.280

0.027497

1.839

d Father’s occupation: white collar____________

-0.000960

-0.086

0.001874

0.154

d Mother’s occupation: executive cadre______

0.011883

0.812

-0.021382

-1.375

d Mother’s occupation: white collar___________

0.019560

1.942

0.006837

0.628

Erasmus_____________________________

0.031319

2.666

0.052507

4.020

Firm size____________________________________

0.089913

6.131

0.074524

3.547

d Attended private courses at university______

0.020647

0.995

0.001685

0.066

d Father employed________________________

0.004156

0.230

-0.000877

-0.041

d Father self-employed_____________________

0.023489

2.481

0.023034

2.074

Industrial sector________________________________

0.022993

2.527

0.037864

4.124

Paid training__________________________________

-0.145341

-5.817

-0.120088

-4.218

Region dummies________________________

X

X

Number of observations___________________

3744

3709

Rbar-squared____________________________

0.1480

0.1460

F_________________________________________

11.805 (0.00)

11.596 (0.0^5)~

Average wage women (ln)________________

7.1099409

Average wage men (ln)____________________

7.2269904



More intriguing information

1. Searching Threshold Inflation for India
2. Critical Race Theory and Education: Racism and antiracism in educational theory and praxis David Gillborn*
3. Campanile Orchestra
4. The name is absent
5. Anti Microbial Resistance Profile of E. coli isolates From Tropical Free Range Chickens
6. Giant intra-abdominal hydatid cysts with multivisceral locations
7. The name is absent
8. Can genetic algorithms explain experimental anomalies? An application to common property resources
9. Are Public Investment Efficient in Creating Capital Stocks in Developing Countries?
10. Opciones de política económica en el Perú 2011-2015
11. Do imputed education histories provide satisfactory results in fertility analysis in the Western German context?
12. Voting by Committees under Constraints
13. The name is absent
14. The name is absent
15. NATURAL RESOURCE SUPPLY CONSTRAINTS AND REGIONAL ECONOMIC ANALYSIS: A COMPUTABLE GENERAL EQUILIBRIUM APPROACH
16. Chebyshev polynomial approximation to approximate partial differential equations
17. The name is absent
18. Food Prices and Overweight Patterns in Italy
19. Novelty and Reinforcement Learning in the Value System of Developmental Robots
20. A COMPARATIVE STUDY OF ALTERNATIVE ECONOMETRIC PACKAGES: AN APPLICATION TO ITALIAN DEPOSIT INTEREST RATES