6
our data set by considering all variables statistically and economically significant in explaining the
wage gap (Tab. 2-9).
Table 2. OLS estimation results of the earnings equation for employees (male and female samples)
Variable |
Earnings equation (employees) | |||
Female |
Male | |||
Coefficient |
T-value |
Coefficient |
T-value | |
CONSTANT |
6.451078 |
80.249 |
6.516929 |
89.401 |
Educational performance___________________ |
0.000950 |
4.031 |
0.001423 |
5.301 |
lambda________________________________ |
0.383831 |
6.319 |
0.414517 |
7.583 |
experience________________________________ |
-0.036356 |
-6.557 |
0.016100 |
1.465 |
experience2_______________________________ |
0.004010 |
5.722 |
-0.001348 |
-1.141 |
Sciences________________________________ |
0.189980 |
4.621 |
0.075470 |
2.594 |
Pharmacy____________________________ |
0.290410 |
6.725 |
0.150891 |
5.120 |
Natural sciences____________________________ |
0.130703 |
3.820 |
0.062717 |
1.939 |
Engineering_______________________________ |
0.360510 |
7.515 |
0.253378 |
7.238 |
Architecture___________________________________ |
0.183003 |
3.857 |
0.121772 |
3.219 |
Agricultural studies___________________________ |
0.138144 |
3.090 |
0.058937 |
1.561 |
Economics, business and statistics___________ |
0.246893 |
6.207 |
0.168118 |
5.653 |
Political sciences and sociology______________ |
0.203020 |
4.692 |
0.074503 |
2.384 |
Law________________________________ |
0.075950 |
2.721 |
0.042657 |
1.507 |
Humanities________________________________ |
0.131889 |
3.114 |
-0.077757 |
-2.105 |
Foreign languages_________________________ |
0.162961 |
3.879 |
0.016601 |
0.391 |
Teachers college__________________________ |
0.111559 |
2.432 |
0.056077 |
1.162 |
Psychology______________________________ |
0.082282 |
1.645 |
0.043418 |
0.979 |
Hours worked (Q2 21)____________________ |
0.008788 |
8.024 |
0.007432 |
6.449 |
University of North____________________________ |
-0.052636 |
-3.973 |
-0.011993 |
-0.804 |
University of Center_________________________ |
-0.010915 |
-0.766 |
0.043994 |
2.943 |
d Liceo_____________________________________ |
-0.017863 |
-1.904 |
0.002172 |
0.235 |
d Previously entered another degree course |
0.005927 |
0.490 |
0.012281 |
0.894 |
d Studied in the hometown__________________ |
0.000538 |
0.068 |
0.003824 |
0.440 |
d Moved to attend university_________________ |
0.034356 |
3.784 |
0.032285 |
3.018 |
d Working student_________________________ |
0.096551 |
7.163 |
0.076887 |
6.731 |
Training_______________________________________ |
-0.090338 |
-6.441 |
-0.107812 |
-7.538 |
Married_____________________________________ |
0.005629 |
0.685 |
0.080510 |
6.880 |
Children____________________________________ |
-0.009754 |
-0.620 |
0.091021 |
4.602 |
d Father’s university degree_________________ |
0.030699 |
2.294 |
0.007577 |
0.509 |
d Father’s high school degree________________ |
0.018705 |
1.967 |
0.004630 |
0.421 |
d Mother’s degree_________________________ |
-0.002357 |
-0.162 |
0.009058 |
0.567 |
d High school______________________________ |
-0.005666 |
-0.598 |
0.011621 |
1.083 |
d Father’s occupation: manager_____________ |
0.015552 |
1.036 |
0.030424 |
1.903 |
d Father’s occupation: executive cadre_______ |
-0.003928 |
-0.280 |
0.027497 |
1.839 |
d Father’s occupation: white collar____________ |
-0.000960 |
-0.086 |
0.001874 |
0.154 |
d Mother’s occupation: executive cadre______ |
0.011883 |
0.812 |
-0.021382 |
-1.375 |
d Mother’s occupation: white collar___________ |
0.019560 |
1.942 |
0.006837 |
0.628 |
Erasmus_____________________________ |
0.031319 |
2.666 |
0.052507 |
4.020 |
Firm size____________________________________ |
0.089913 |
6.131 |
0.074524 |
3.547 |
d Attended private courses at university______ |
0.020647 |
0.995 |
0.001685 |
0.066 |
d Father employed________________________ |
0.004156 |
0.230 |
-0.000877 |
-0.041 |
d Father self-employed_____________________ |
0.023489 |
2.481 |
0.023034 |
2.074 |
Industrial sector________________________________ |
0.022993 |
2.527 |
0.037864 |
4.124 |
Paid training__________________________________ |
-0.145341 |
-5.817 |
-0.120088 |
-4.218 |
Region dummies________________________ |
X |
X | ||
Number of observations___________________ |
3744 |
3709 | ||
Rbar-squared____________________________ |
0.1480 |
0.1460 | ||
F_________________________________________ |
11.805 (0.00) |
11.596 (0.0^5)~ | ||
Average wage women (ln)________________ |
7.1099409 | |||
Average wage men (ln)____________________ |
7.2269904 |
More intriguing information
1. Tissue Tracking Imaging for Identifying the Origin of Idiopathic Ventricular Arrhythmias: A New Role of Cardiac Ultrasound in Electrophysiology2. HOW WILL PRODUCTION, MARKETING, AND CONSUMPTION BE COORDINATED? FROM A FARM ORGANIZATION VIEWPOINT
3. Target Acquisition in Multiscale Electronic Worlds
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. Artificial neural networks as models of stimulus control*
9. The name is absent
10. CGE modelling of the resources boom in Indonesia and Australia using TERM