Gender stereotyping and wage discrimination among Italian graduates



6

our data set by considering all variables statistically and economically significant in explaining the
wage gap (Tab. 2-9).

Table 2. OLS estimation results of the earnings equation for employees (male and female samples)

Variable

Earnings equation (employees)

Female

Male

Coefficient

T-value

Coefficient

T-value

CONSTANT

6.451078

80.249

6.516929

89.401

Educational performance___________________

0.000950

4.031

0.001423

5.301

lambda________________________________

0.383831

6.319

0.414517

7.583

experience________________________________

-0.036356

-6.557

0.016100

1.465

experience2_______________________________

0.004010

5.722

-0.001348

-1.141

Sciences________________________________

0.189980

4.621

0.075470

2.594

Pharmacy____________________________

0.290410

6.725

0.150891

5.120

Natural sciences____________________________

0.130703

3.820

0.062717

1.939

Engineering_______________________________

0.360510

7.515

0.253378

7.238

Architecture___________________________________

0.183003

3.857

0.121772

3.219

Agricultural studies___________________________

0.138144

3.090

0.058937

1.561

Economics, business and statistics___________

0.246893

6.207

0.168118

5.653

Political sciences and sociology______________

0.203020

4.692

0.074503

2.384

Law________________________________

0.075950

2.721

0.042657

1.507

Humanities________________________________

0.131889

3.114

-0.077757

-2.105

Foreign languages_________________________

0.162961

3.879

0.016601

0.391

Teachers college__________________________

0.111559

2.432

0.056077

1.162

Psychology______________________________

0.082282

1.645

0.043418

0.979

Hours worked (Q2 21)____________________

0.008788

8.024

0.007432

6.449

University of North____________________________

-0.052636

-3.973

-0.011993

-0.804

University of Center_________________________

-0.010915

-0.766

0.043994

2.943

d Liceo_____________________________________

-0.017863

-1.904

0.002172

0.235

d Previously entered another degree course

0.005927

0.490

0.012281

0.894

d Studied in the hometown__________________

0.000538

0.068

0.003824

0.440

d Moved to attend university_________________

0.034356

3.784

0.032285

3.018

d Working student_________________________

0.096551

7.163

0.076887

6.731

Training_______________________________________

-0.090338

-6.441

-0.107812

-7.538

Married_____________________________________

0.005629

0.685

0.080510

6.880

Children____________________________________

-0.009754

-0.620

0.091021

4.602

d Father’s university degree_________________

0.030699

2.294

0.007577

0.509

d Father’s high school degree________________

0.018705

1.967

0.004630

0.421

d Mother’s degree_________________________

-0.002357

-0.162

0.009058

0.567

d High school______________________________

-0.005666

-0.598

0.011621

1.083

d Father’s occupation: manager_____________

0.015552

1.036

0.030424

1.903

d Father’s occupation: executive cadre_______

-0.003928

-0.280

0.027497

1.839

d Father’s occupation: white collar____________

-0.000960

-0.086

0.001874

0.154

d Mother’s occupation: executive cadre______

0.011883

0.812

-0.021382

-1.375

d Mother’s occupation: white collar___________

0.019560

1.942

0.006837

0.628

Erasmus_____________________________

0.031319

2.666

0.052507

4.020

Firm size____________________________________

0.089913

6.131

0.074524

3.547

d Attended private courses at university______

0.020647

0.995

0.001685

0.066

d Father employed________________________

0.004156

0.230

-0.000877

-0.041

d Father self-employed_____________________

0.023489

2.481

0.023034

2.074

Industrial sector________________________________

0.022993

2.527

0.037864

4.124

Paid training__________________________________

-0.145341

-5.817

-0.120088

-4.218

Region dummies________________________

X

X

Number of observations___________________

3744

3709

Rbar-squared____________________________

0.1480

0.1460

F_________________________________________

11.805 (0.00)

11.596 (0.0^5)~

Average wage women (ln)________________

7.1099409

Average wage men (ln)____________________

7.2269904



More intriguing information

1. Thresholds for Employment and Unemployment - a Spatial Analysis of German Regional Labour Markets 1992-2000
2. An Estimated DSGE Model of the Indian Economy.
3. Agricultural Policy as a Social Engineering Tool
4. The name is absent
5. The Context of Sense and Sensibility
6. The Impact of Optimal Tariffs and Taxes on Agglomeration
7. The name is absent
8. Factores de alteração da composição da Despesa Pública: o caso norte-americano
9. Making International Human Rights Protection More Effective: A Rational-Choice Approach to the Effectiveness of Ius Standi Provisions
10. Transgression et Contestation Dans Ie conte diderotien. Pierre Hartmann Strasbourg