Macroeconomic Interdependence in a Two-Country DSGE Model under Diverging Interest-Rate Rules



A. Appendix

Now let us return to the case of sticky prices (δ > 0). From the domestic PPI (6) one gets the subsequent
law of motion:

1                    1 1

Pt,H = (1 - δ)Pt(h)    + δPt-1,H.

Log-linearizing the preceding formula around the zero-inflation steady-state price level PH yields the
following percentage deviations:

Pt,H = (1 - δ)Pt(h) + δp>t-1 ,H.

Now reformulate the price-setting equation as follows:

Et


IXX ( δβ ) s-tPH)θ-1 μ ρH)-1 ( Cw )ι-Λ U
s=t           Pt,H         Ps

∞                     θ         -1

—Et Xδβ)-t Ks p     P-H^ (Cw)1 -ρ  ,

s=t                          ,

where Qt := Pt(h)/Pt,H.

If one log-linearizes this equation around the zero-inflation steady-state, one finally obtains the subsequent
percentage deviations (
Q = 1, [θ/(θ — 1)]κfex = 1):
where most of the terms cancel out.

ln


• ( Cw )1 1

11 - δβ J


( C w )1 -ρ

1 -δβ


( (∕ww 1 — ρ      

l , i qt + X(δβ)s-t w)1

1-δβ      s=t


ρ[(1 - ρ)cW + (θ - 1)(Et [Ps,H] - pt,H) + (-1)(Et [Ps,H] - Et [Ps])]}


ln


■ //ɔw 1 θ flexx ^

( C )   ^-1K κt


( C w )1 -ρ

1 -δβ


1-δβ

IXt(δβ)s-t(Cw)1 [(1 - ρ)cw + Et[^s]+ θ(Et[Ps,Η] - pt,H) + (-1)(Et[Ps,H] - Et[ps])]} ,


Solving the remainder for ^t + pt,H, one gets:

^t + Pt,H = (1 - δβ) XX(δβ)s-t{Et [ps,H]+ Et [^s]}

= (1 - δβ)(Pt,H + ^t) + δβ{Et[^t+1] + Et[Pt +1 ,H]}
^
q1 = (1 - δβ)κt + δβ{Et[qt +1] + Et[πt +1 ,H]},

where Et [t+1 ,H] := Et [Pt +1 ,H] - Pt,H∙ Due to qt := Pt(h) - P>t,H and P>t (h) = [1 /(1 - δ)]pt,H - [δ/(1 -
δ
)]P>t-1 ,H, it follows that qt = [δ/(1 - δ)]πt,H∙ Plugging this result into the above equation one finally
obtains the domestic NKPC (42):

-E lɪ(1 - δ )(1 - δβ

πt,H = βEt[ πt+1 ,H] +--δ--------κ t.

Note that the foreign NKPC (43) can be derived analogously∙

34



More intriguing information

1. GOVERNANÇA E MECANISMOS DE CONTROLE SOCIAL EM REDES ORGANIZACIONAIS
2. Barriers and Limitations in the Development of Industrial Innovation in the Region
3. Outsourcing, Complementary Innovations and Growth
4. Feeling Good about Giving: The Benefits (and Costs) of Self-Interested Charitable Behavior
5. The name is absent
6. DISCUSSION: ASSESSING STRUCTURAL CHANGE IN THE DEMAND FOR FOOD COMMODITIES
7. Developmental Robots - A New Paradigm
8. From Communication to Presence: Cognition, Emotions and Culture towards the Ultimate Communicative Experience. Festschrift in honor of Luigi Anolli
9. The name is absent
10. Qualification-Mismatch and Long-Term Unemployment in a Growth-Matching Model