Licensing Schemes in Endogenous Entry



3 Result

We solve this game by backward induction. Given a license scheme (w, f ), the licensees
compete in quantities in the third stage. The profit maximization problem of each
licensee i (= 1, ..., n) is as follows:

max qi(P(Q) - w - c) - f.                          (1)

Qi

The first-order condition of each licensees i (= 1, ..., n) is given by

P(Q) - c - w + P,qi = 0.                           (2)

Note that since we assume that P'(Q) + QP"(Q) < 0, the second-order condition is
satisfied.

In the second stage, licensees enter the market as long as they can obtain positive
profits. Thus, we have the following zero-profit condition for each licensee i (= 1, ..., n):

qi(P(Q) - w - c) - f = 0.                           (3)

In what follows, we focus on the symmetric equilibrium where all the licensees choose
the same strategies, i.e., q
i = q for all i (= 1,...,n). Now we have the equilibrium
conditions in the second and third stages as follows:

P(Q) - c - w + P'q = 0,                        (4)

q(P(Q) - c - w) - f = 0.                         (5)

Given w and f, let q(w, f ) and n(w, f ) be the solutions to (4) and (5). Therefore, from
equations (4) and (5), the implicit function theorem implies the following7:

P ' q + q2P ''   P ' + P 'n + qP ''n

q2P'     (P - w - c) + nqP'

dn
dw
dq

-dw -

=

T

.q.

,

and

P 'q + q2P '' P 'n + P ' + qP ''n
q
2P'     (P - w - c) + nqP'

dn
df
dq
.df.

=

o’

1

.

This yields:

dn 1  (P - c - w - qP') - nq2P''

(6)

(7)

(8)

.                        (9)

dw = ^ (P - c - w)(P' + qP'') - q(P')
dq                    
-q3P ''

2 ,

dw    (-(P - c - w)q(P' + P''q)) + q2(P')2 ,

dn            P ' + nqP '' + nP '

df = (-(P - c - w)q(P' + P''q)) + q2(P')2 ,
dq                    q(P ''q + P ')

df     (-(P - c - w)q(P' + P''q)) + q2(P

')2

7Since the determinant is (P - c - w)(P' + wP") - q(P')2 0(≠ 0), the implicit function theorem
can be applied.



More intriguing information

1. Outline of a new approach to the nature of mind
2. The name is absent
3. The name is absent
4. Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide
5. Economies of Size for Conventional Tillage and No-till Wheat Production
6. Getting the practical teaching element right: A guide for literacy, numeracy and ESOL teacher educators
7. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon
8. The name is absent
9. ISSUES AND PROBLEMS OF IMMEDIATE CONCERN
10. Cross border cooperation –promoter of tourism development