and the J2⅛=ι(mi - 9i) parameters
φ1B = (φ1B1, ∙∙∙, ΦiBr ) = (b1±Cφ1 - Φι ), ∙∙∙, b'rΛ,Φr - ≠θ)),
and finally the s1s2 parameters
φ1C = β ±2∏∙
Thus the number of parameters is ɪɪɪ m⅞ + s1s2∙ Note that
φi - r'' = bibi(ψi - ψ0^ + 6ii⅛ - ψ0^ = biφ2i + ⅛±φiBz∙
The parameters ф1В, φ1c, and φ2 are varying freely.
B.3 Derivatives of parameter functions
We first investigate the derivatives of B2 with respect to the parameters l, and find
JLb2 = β °1'2[ /Lβ (⅛)]tβ 0'β (⅛r 1 + β "⅛w.)[ / (3 0'β w.r ι]
/ B2 = β01'2[ /,β(≠)](β0'β(L))-1 + β0l2β(L)[ ∕∙(β'
σψ σψ σψ
+2β 2 φ-β(≠)][ɪ(β0'β(L))-1]∙
σψ σψ
For L = L0 we have β(φ0) = β0, so that βθ'2β(,L0) = βθ'2β0 = 0, and β0'β(L0) = Ir,
which means that because ɪɪβ(L) = 0, we find
σ d1 .
/Lb21ψ=ψ°
σ2 D
2 ∙2
= β1'2[H(d≠1), ∙ ∙ ∙, Hr(dφr)] = (αιb'1(d≠1), ∙ ∙ ∙, <⅛b'r(dφr)),
(27)
(28)
(29)
(30)
= 2β01'2[ (L)∣w>][ɪ(β . ]∙
/l /L
This implies, using dψi = b⅛(dφ2i) + bjɪ(dφ1Bi), that
• I n
aφ2 B2|.=.°
I n
/φ1b B2|...°
(θ∙1 (dφ21) , ∙ ∙ ∙ , ®r (dφ2rD>
(α1b'1b1±(dφ1B1), ∙ ∙ ∙, ^rξφr(dφwr)) = 0∙
Similarly
β ^2 /j. β Cφ‰=y°
σφ1B
/ 7/7 ∕7/ ∖ 7∕7∕7/ W ΓX
= (u1b1b1χ(dφ1B1), ∙ ∙ ∙ , ^rbrbr(dφ1Br)) = 0
30
More intriguing information
1. The name is absent2. The Variable-Rate Decision for Multiple Inputs with Multiple Management Zones
3. Robust Econometrics
4. The name is absent
5. The value-added of primary schools: what is it really measuring?
6. Empirically Analyzing the Impacts of U.S. Export Credit Programs on U.S. Agricultural Export Competitiveness
7. Internationalization of Universities as Internationalization of Bildung
8. Parent child interaction in Nigerian families: conversation analysis, context and culture
9. Survey of Literature on Covered and Uncovered Interest Parities
10. Behaviour-based Knowledge Systems: An Epigenetic Path from Behaviour to Knowledge