and the J2⅛=ι(mi - 9i) parameters
φ1B = (φ1B1, ∙∙∙, ΦiBr ) = (b1±Cφ1 - Φι ), ∙∙∙, b'rΛ,Φr - ≠θ)),
and finally the s1s2 parameters
φ1C = β ±2∏∙
Thus the number of parameters is ɪɪɪ m⅞ + s1s2∙ Note that
φi - r'' = bibi(ψi - ψ0^ + 6ii⅛ - ψ0^ = biφ2i + ⅛±φiBz∙
The parameters ф1В, φ1c, and φ2 are varying freely.
B.3 Derivatives of parameter functions
We first investigate the derivatives of B2 with respect to the parameters l, and find
JLb2 = β °1'2[ /Lβ (⅛)]tβ 0'β (⅛r 1 + β "⅛w.)[ / (3 0'β w.r ι]
/ B2 = β01'2[ /,β(≠)](β0'β(L))-1 + β0l2β(L)[ ∕∙(β'
σψ σψ σψ
+2β 2 φ-β(≠)][ɪ(β0'β(L))-1]∙
σψ σψ
For L = L0 we have β(φ0) = β0, so that βθ'2β(,L0) = βθ'2β0 = 0, and β0'β(L0) = Ir,
which means that because ɪɪβ(L) = 0, we find
σ d1 .
/Lb21ψ=ψ°
σ2 D
2 ∙2
= β1'2[H(d≠1), ∙ ∙ ∙, Hr(dφr)] = (αιb'1(d≠1), ∙ ∙ ∙, <⅛b'r(dφr)),
(27)
(28)
(29)
(30)
= 2β01'2[ (L)∣w>][ɪ(β . ]∙
/l /L
This implies, using dψi = b⅛(dφ2i) + bjɪ(dφ1Bi), that
• I n
aφ2 B2|.=.°
I n
/φ1b B2|...°
(θ∙1 (dφ21) , ∙ ∙ ∙ , ®r (dφ2rD>
(α1b'1b1±(dφ1B1), ∙ ∙ ∙, ^rξφr(dφwr)) = 0∙
Similarly
β ^2 /j. β Cφ‰=y°
σφ1B
/ 7/7 ∕7/ ∖ 7∕7∕7/ W ΓX
= (u1b1b1χ(dφ1B1), ∙ ∙ ∙ , ^rbrbr(dφ1Br)) = 0
30