det (I - βP) = (1 - 0, 5β) (1 - β2) = (1 - β)(1 + β) (1 - 0,5β)
(I - βP)-1
ɪ β „ 0 1-β 1-β2 0 β 1 0 1-β2 1-β2 0 0,5β2 0,5β2 1 |
1 Γ 0, 5 0, 5 0 ' 1 - β 0, 5 0, 5 0 1 Γ 0 0 0 ■ +-------- 0 0 0 1 - 0,5β _2 _ 1 1 - 3 3 1 - |
(1-β2 )(1-0,5β) (1-β2)(1-0,5β) 1-0,5β 1 Γ 0,5 -0,5 0 ' + —- -0,5 0,5 0 1+β 1 -1 0 66 |
Hence
ν∞ (β) = (1 - β ∙ P) 1 q =C-j----X [∙] + 1 I [ [∙ ∙ ∙] + ^j----+~ξ+ [∙ ∙ ∙]
y 1 - β 1 + β 1 - 0, 5β
-3
5, 5
5, 5
5, 5
2, 5
-2, 5
5
6
ι 1
+ 1 - 0, 5β
0
0
28
3
Now we can calculate total finite expected rewards for given values β, β1 = 0, 5
and β2 = 0, 99. For β1 = 0, 5 we obtain
ν∞ (0, 5) =
1 - 0, 5
5, 5
5, 5
5, 5
ι 1
+ 1 + 0, 5
2, 5
-2,5
5
6
ι 1
+ 1 - 0,5 ∙ 0, 5
0
0
28
3 -
and next
ν1,∞ (0, 5) = 2 ∙ 5, 5 + 0, 666 ∙ 2, 5 + 1, 333 ∙ 0 = 11 + 1, 666 + 0 = 12, 666,
ν2,∞ (0, 5) = 2 ∙ 5, 5 - 0, 666 + 0 = 9, 334,
11
More intriguing information
1. The name is absent2. Regional science policy and the growth of knowledge megacentres in bioscience clusters
3. A Principal Components Approach to Cross-Section Dependence in Panels
4. Les freins culturels à l'adoption des IFRS en Europe : une analyse du cas français
5. National urban policy responses in the European Union: Towards a European urban policy?
6. The name is absent
7. Evaluating the Success of the School Commodity Food Program
8. The Composition of Government Spending and the Real Exchange Rate
9. Political Rents, Promotion Incentives, and Support for a Non-Democratic Regime
10. The name is absent