AN ANALYTICAL METHOD TO CALCULATE THE ERGODIC AND DIFFERENCE MATRICES OF THE DISCOUNTED MARKOV DECISION PROCESSES



det (I - βP) = (1 - 0, 5β) (1 - β2) = (1 - β)(1 + β) (1 - 0,5β)

(I - βP)-1


ɪ        β „      0

1-β             1-β2          0

β                1            0

12              12           0

0,5β2                 0,5β2              1

1 Γ 0, 5 0, 5 0 '
0,5 0,5 0   +

1 - β 0, 5 0, 5 0

1      Γ 0     0   0

+-------- 0   0  0

1 - 0,5β   _2 _ 1  1

-     3       3    1 -

(12 )(1-0,5β)   (12)(1-0,5β)   1-0,5β

1 Γ   0,5 -0,5 0 '

+ —-  -0,5   0,5 0

1+β     1   -1 0

66


Hence

ν(β) = (1 - β P)  1 q =C-j----X [∙] + 1 I [ [∙ ∙ ∙] + ^j----+~ξ+ [∙ ∙ ∙]

y 1 - β 1 + β 1 - 0, 5β

-3


5, 5

5, 5

5, 5


2, 5


-2, 5

5
6


ι 1

+ 1 - 0, 5β


0

0

28

3


Now we can calculate total finite expected rewards for given values β, β1 = 0, 5
and β
2 = 0, 99. For β1 = 0, 5 we obtain

ν(0, 5) =


1 - 0, 5


5, 5

5, 5

5, 5


ι 1

+ 1 + 0, 5


2, 5
-2,5

5
6


ι 1

+ 1 - 0,5 0, 5


0

0

28

3 -


and next

ν1,∞ (0, 5) = 2 5, 5 + 0, 666 2, 5 + 1, 333 0 = 11 + 1, 666 + 0 = 12, 666,
ν
2,∞ (0, 5) = 2 5, 5 - 0, 666 + 0 = 9, 334,

11



More intriguing information

1. The name is absent
2. Survey of Literature on Covered and Uncovered Interest Parities
3. Quality Enhancement for E-Learning Courses: The Role of Student Feedback
4. Climate Policy under Sustainable Discounted Utilitarianism
5. The name is absent
6. The name is absent
7. TECHNOLOGY AND REGIONAL DEVELOPMENT: THE CASE OF PATENTS AND FIRM LOCATION IN THE SPANISH MEDICAL INSTRUMENTS INDUSTRY.
8. Motivations, Values and Emotions: Three Sides of the same Coin
9. The name is absent
10. The name is absent