AN ANALYTICAL METHOD TO CALCULATE THE ERGODIC AND DIFFERENCE MATRICES OF THE DISCOUNTED MARKOV DECISION PROCESSES



det (I - βP) = (1 - 0, 5β) (1 - β2) = (1 - β)(1 + β) (1 - 0,5β)

(I - βP)-1


ɪ        β „      0

1-β             1-β2          0

β                1            0

12              12           0

0,5β2                 0,5β2              1

1 Γ 0, 5 0, 5 0 '
0,5 0,5 0   +

1 - β 0, 5 0, 5 0

1      Γ 0     0   0

+-------- 0   0  0

1 - 0,5β   _2 _ 1  1

-     3       3    1 -

(12 )(1-0,5β)   (12)(1-0,5β)   1-0,5β

1 Γ   0,5 -0,5 0 '

+ —-  -0,5   0,5 0

1+β     1   -1 0

66


Hence

ν(β) = (1 - β P)  1 q =C-j----X [∙] + 1 I [ [∙ ∙ ∙] + ^j----+~ξ+ [∙ ∙ ∙]

y 1 - β 1 + β 1 - 0, 5β

-3


5, 5

5, 5

5, 5


2, 5


-2, 5

5
6


ι 1

+ 1 - 0, 5β


0

0

28

3


Now we can calculate total finite expected rewards for given values β, β1 = 0, 5
and β
2 = 0, 99. For β1 = 0, 5 we obtain

ν(0, 5) =


1 - 0, 5


5, 5

5, 5

5, 5


ι 1

+ 1 + 0, 5


2, 5
-2,5

5
6


ι 1

+ 1 - 0,5 0, 5


0

0

28

3 -


and next

ν1,∞ (0, 5) = 2 5, 5 + 0, 666 2, 5 + 1, 333 0 = 11 + 1, 666 + 0 = 12, 666,
ν
2,∞ (0, 5) = 2 5, 5 - 0, 666 + 0 = 9, 334,

11



More intriguing information

1. Pricing American-style Derivatives under the Heston Model Dynamics: A Fast Fourier Transformation in the Geske–Johnson Scheme
2. Inflation and Inflation Uncertainty in the Euro Area
3. The name is absent
4. Manufacturing Earnings and Cycles: New Evidence
5. The name is absent
6. Modelling Transport in an Interregional General Equilibrium Model with Externalities
7. On the Desirability of Taxing Charitable Contributions
8. BODY LANGUAGE IS OF PARTICULAR IMPORTANCE IN LARGE GROUPS
9. Education Research Gender, Education and Development - A Partially Annotated and Selective Bibliography
10. Cross border cooperation –promoter of tourism development