AN ANALYTICAL METHOD TO CALCULATE THE ERGODIC AND DIFFERENCE MATRICES OF THE DISCOUNTED MARKOV DECISION PROCESSES



Hence


q=

After some easy transformation we receive:

(I-βP)=

1 - 0, 5β   -0, 5β

-0, 4β   1 - 0, 6β

T 1 - 0, 5β   -0, 4β

=    -0, 5β   1 - 0, 6β

and

(I - βP)-1


1         1 - 0,6β    0,5β

det (I - βP)[   0, 4β    1 - 0, 5β

11     β2

det(I-βP) = (1 -0,5β) (1 -0,6β) = 1


-10 β + β0 = (i β )(1 0, ιβ ).

Finally

(I - βP)-1


1-0,6β

(1)(1-0,1β)
0,4β

(1)(1-0,1β)


0,5β

(1)(1-0,1β)
1-0,5β

(1)(1-0,1β)


Now as an example, we decompose into partial fractions the first element of ma-
trix (1
- βP)-1.

We receive:

1 - 0,6β =  D111  +    D21    =   4   +     5

(1 - β)(1 - 0, 1β)    (1 - β)    (1 - 0, 1β)    (1 - e)    (1 - 0, 1β)

because

1 - 0, 6β = D111 (1 - 0, 1β) + (1 - β) D121.



More intriguing information

1. Innovation and business performance - a provisional multi-regional analysis
2. The name is absent
3. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
4. CONSUMER PERCEPTION ON ALTERNATIVE POULTRY
5. Non-farm businesses local economic integration level: the case of six Portuguese small and medium-sized Markettowns• - a sector approach
6. Density Estimation and Combination under Model Ambiguity
7. The name is absent
8. Personal Income Tax Elasticity in Turkey: 1975-2005
9. Meat Slaughter and Processing Plants’ Traceability Levels Evidence From Iowa
10. Tax systems and tax reforms in Europe: Rationale and open issue for more radical reforms