DURABLE CONSUMPTION AS A STATUS GOOD: A STUDY OF NEOCLASSICAL CASES



The consumer-producer’s problem is, thus, formalized as follows:

max


Γ {u


c + ‘,s Q ɪ a ) + V (ŋ) e βt dt,


(2.8a)


subject to:

a = c δa,

____, _

к = F(к, I) c,

(2.8b)


(2.8c)


and the initial stocks of durable consumption and physical capital, a(0) = aŋ > 0 and
к (0) = ко > 0, where β is the exogenous rate of time preference. To solve the consumer-
producer’s problem, we form the current value Hamiltonian, which is given by:
where
φ and μ are the costate variables corresponding, respectively, to the constraints
(2.8b) and (2.8c). Maximizing equation (2.9), we calculate the following
Hrst order opti-
mality conditions:

c + a, s


+ V(Z) + φ (c δa) + μ [F(к, Z) c] ,


(2.9)


и и           , .1 U4 [c + a, s (г)] s' (г)            ,                           „ .

uc [c + a,s (г)] +                        = μ - φ,                (2.l0a)

e + a

V'(Z) = μFι (k,Z),                               (2.10b)

φ = (β + δ) φ Uc [c + a,s (г)] u [c +‘,'f ,jl s'(г),            (2.10c)

e + a

μ = μ Fk(k,Z)] .                             (2.10d)

The optimality conditions (2.10a)-(2.10d) have a straightforward interpretation. Equation



More intriguing information

1. Stable Distributions
2. The Institutional Determinants of Bilateral Trade Patterns
3. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.
4. The name is absent
5. News Not Noise: Socially Aware Information Filtering
6. The name is absent
7. Mergers under endogenous minimum quality standard: a note
8. Agricultural Policy as a Social Engineering Tool
9. The name is absent
10. Keynesian Dynamics and the Wage-Price Spiral:Estimating a Baseline Disequilibrium Approach