applying a change of variable from (xi,xj) = (xi,u) where u = xj-xi we get the following expression
1 C KK2(u) + £hRK(u)g(xi + hu)du∖2 — 2K(u) £hRK(u)g(xi + hu)du∖
= 4hJ J ---------------------------g2χ)---------------------------g(Xi)g(xi + hu)du '
' 41h K K2(u)du + o( 1) = O(1).
4h h h
(61)
Similarly we can show that
E [Jn(xi,xj)Jn(xj ,xi)]
' 4-h( K2(u)du + o(h) = O(h).
4h h h
(62)
Then it follows that
and
E H12n (xi
xj)∖ = E £2Jn (xi,xj)+ Jn (xi,xj)Jn (xj ,xi
)1 = h/
K 2(u)du + o(ɪ) = θ(ɪ),
hh
(63)
21
σ2n = n2h J K2(u)du + o(h).
(64)
The second term in () is the expected value of a Bias term, that is
Bbn 1 X bn(xi) ' h-μ2 I g(2∖x')dx + o(h2),
n2
i
(65)
where g(2)(x) is the second derivative of the p.d.f. Hence Bbn = Op (n 1/2h2^ Thus, what we obtain is
^ ^ ^
V1n = V11n + Bn
σ1nN(0, 1) + y μ2
g(2)(x)dx+o(h2).
(66)
1
V2n = —
n
i
"p"" / ∖ P/ ∖
fn(xi) — f(xi)
g(xi)
— "I 2
+ f (xi) - g(xi)
g(χi)
“ --—~~ ___
fn(xi) — f (xi)
g(xi)
f (xi) — g(χi)
g(χi)
f fn(xi) — f (xi)
∖ g(xi)

(67)
= Vb21n + Vb22n + Vb23n. (68)
V21n = 1 X
n
i
2
—1— X an(xi,Xj) I
n—1
j,i6=j
1
n(n — 1)2
ΣΣаП (xi,xj )+ ( ⅛π∑ ∑∑αn(xi>Xj )αn(xi,xz ).
n(n — 1)
i j,i6=j i j6=i z6=j
(69)
The first part is a variance term and it will affect the mean of the asymptotic distribution. The second
term equals a twice centered degenerate U-statistic U2n, which is of the same order of magnitude of V11n
and it also affects the asymptotic distribution of KI.
27
More intriguing information
1. Dual Inflation Under the Currency Board: The Challenges of Bulgarian EU Accession2. The name is absent
3. Nurses' retention and hospital characteristics in New South Wales, CHERE Discussion Paper No 52
4. Eigentumsrechtliche Dezentralisierung und institutioneller Wettbewerb
5. El Mercosur y la integración económica global
6. An Efficient Secure Multimodal Biometric Fusion Using Palmprint and Face Image
7. Campanile Orchestra
8. Infrastructure Investment in Network Industries: The Role of Incentive Regulation and Regulatory Independence
9. AMINO ACIDS SEQUENCE ANALYSIS ON COLLAGEN
10. Are combination forecasts of S&P 500 volatility statistically superior?