Density Estimation and Combination under Model Ambiguity



A             _ _ 1 T             г» TT 11∕- no n J 1 r∙ , ,           r τ^k ∙     ∙       1

As n → ∞,by Lemma 2 Hall(1984) the first term of V21n is given by

1

n(n 1)2


a2n(xi,xj) = σ2n + Op(n-3/2h-1),
i j,i6=j


(70)


where σ2l = 21nσ2n.

2Ub2l =


2

n(n 1)


i  i6=j


al(xj, x)al(xi, x)g(x)dx =


n(n 1) XX H2n(xi,xj),
i i6=j


(71)


1 K ʌ 1 1 [Kh(x
H2n(xi,Xj)= h h2 -----


χj ) ʃ Κhi χj )g(χj )dχj
g(χi)


Κh(xi-Xz)-J^Κh(xi-Xz)g(xz)dXz
g(χi)


g(xi)dxi.


E Hn(χi,xj )] = h4 E


xi


xi xj ) ʃ Kh (xi
g(xi)


xj) ʃ Kh(xi xj)g(xj)dxj KKh(xi
g(xi)                  g к

xj)g(xj)dxj μKh(xi xz) ʃKh(xi
g к                  g(xi)


xz) — ʃ Kh(xi xz)g(xz)dxz λ ^(x )d
g
(xi)                     g g i '

xz)g(xz)dxz             2

------------------ I g(xi)dxi


2

''T^∙ .

xi


g(xj)g(xz)dxj dx


=⅛/KPk


xi xj )Kh(χi
g2(xi)


xz ) l rl
----g(x
i)dxi


g(xj )g(xz )dXj dxz + o( ɪ ) =


K (u)K (u + v)
----,------—-—du
g
(xj + hu)


g(xj )g(xj +hu-hz)dxj hdv+o(-) = — f
hh


g2(xj)


2

K(u)K(u + v)du


g2(xj)dxjdv =


' h-1


K K K(u)K(u + v)du dv + o(^)


(72)


By Lemma 3 in Hall(84), then Ub2l is asymptotically Normally distributed N (0, σ22l), where

σ22l ' 2n


2h-1


K (u)K (u + v)du


dv∙


(73)


Hence finally we have that

V2in ~ σ2l + Op(n-3/2h-1) + 2σ2nN(0,1).

(74)


n — 1 P h f (χi)-g(χi) i2
22n n Z-^i
     g(xi)


= l Pi b2n(xi), which is a purely deterministic Bias-squared term, and it will


affect the mean of the asymptotic distribution∙ That is,


1X b2 _ h4 2 f (g(2)(x)¢ 2d , fh4>.                                    r75j

nÇbn 4 μ2J g(x) dx+ o(h )∙                             (75)

Finally we can analyze Vb23l :

2V23n = 2 χf c(xi) f (xi) ! μf (xi) - g(xi) ʌ =    2    X H3ni,            (76)

n i         g(xi)              g(xi)          n(n 1) i

similarly to Hall(1984) define

28



More intriguing information

1. The name is absent
2. Nietzsche, immortality, singularity and eternal recurrence1
3. Olive Tree Farming in Jaen: Situation With the New Cap and Comparison With the Province Income Per Capita.
4. Estimating the Economic Value of Specific Characteristics Associated with Angus Bulls Sold at Auction
5. Migration and Technological Change in Rural Households: Complements or Substitutes?
6. Momentum in Australian Stock Returns: An Update
7. KNOWLEDGE EVOLUTION
8. Land Police in Mozambique: Future Perspectives
9. The urban sprawl dynamics: does a neural network understand the spatial logic better than a cellular automata?
10. Julkinen T&K-rahoitus ja sen vaikutus yrityksiin - Analyysi metalli- ja elektroniikkateollisuudesta