Density Estimation and Combination under Model Ambiguity



A             _ _ 1 T             г» TT 11∕- no n J 1 r∙ , ,           r τ^k ∙     ∙       1

As n → ∞,by Lemma 2 Hall(1984) the first term of V21n is given by

1

n(n 1)2


a2n(xi,xj) = σ2n + Op(n-3/2h-1),
i j,i6=j


(70)


where σ2l = 21nσ2n.

2Ub2l =


2

n(n 1)


i  i6=j


al(xj, x)al(xi, x)g(x)dx =


n(n 1) XX H2n(xi,xj),
i i6=j


(71)


1 K ʌ 1 1 [Kh(x
H2n(xi,Xj)= h h2 -----


χj ) ʃ Κhi χj )g(χj )dχj
g(χi)


Κh(xi-Xz)-J^Κh(xi-Xz)g(xz)dXz
g(χi)


g(xi)dxi.


E Hn(χi,xj )] = h4 E


xi


xi xj ) ʃ Kh (xi
g(xi)


xj) ʃ Kh(xi xj)g(xj)dxj KKh(xi
g(xi)                  g к

xj)g(xj)dxj μKh(xi xz) ʃKh(xi
g к                  g(xi)


xz) — ʃ Kh(xi xz)g(xz)dxz λ ^(x )d
g
(xi)                     g g i '

xz)g(xz)dxz             2

------------------ I g(xi)dxi


2

''T^∙ .

xi


g(xj)g(xz)dxj dx


=⅛/KPk


xi xj )Kh(χi
g2(xi)


xz ) l rl
----g(x
i)dxi


g(xj )g(xz )dXj dxz + o( ɪ ) =


K (u)K (u + v)
----,------—-—du
g
(xj + hu)


g(xj )g(xj +hu-hz)dxj hdv+o(-) = — f
hh


g2(xj)


2

K(u)K(u + v)du


g2(xj)dxjdv =


' h-1


K K K(u)K(u + v)du dv + o(^)


(72)


By Lemma 3 in Hall(84), then Ub2l is asymptotically Normally distributed N (0, σ22l), where

σ22l ' 2n


2h-1


K (u)K (u + v)du


dv∙


(73)


Hence finally we have that

V2in ~ σ2l + Op(n-3/2h-1) + 2σ2nN(0,1).

(74)


n — 1 P h f (χi)-g(χi) i2
22n n Z-^i
     g(xi)


= l Pi b2n(xi), which is a purely deterministic Bias-squared term, and it will


affect the mean of the asymptotic distribution∙ That is,


1X b2 _ h4 2 f (g(2)(x)¢ 2d , fh4>.                                    r75j

nÇbn 4 μ2J g(x) dx+ o(h )∙                             (75)

Finally we can analyze Vb23l :

2V23n = 2 χf c(xi) f (xi) ! μf (xi) - g(xi) ʌ =    2    X H3ni,            (76)

n i         g(xi)              g(xi)          n(n 1) i

similarly to Hall(1984) define

28



More intriguing information

1. SME'S SUPPORT AND REGIONAL POLICY IN EU - THE NORTE-LITORAL PORTUGUESE EXPERIENCE
2. Manufacturing Earnings and Cycles: New Evidence
3. The name is absent
4. Partner Selection Criteria in Strategic Alliances When to Ally with Weak Partners
5. Luce Irigaray and divine matter
6. Constrained School Choice
7. The name is absent
8. Licensing Schemes in Endogenous Entry
9. Quality Enhancement for E-Learning Courses: The Role of Student Feedback
10. Innovation and business performance - a provisional multi-regional analysis