Density Estimation and Combination under Model Ambiguity



A             _ _ 1 T             г» TT 11∕- no n J 1 r∙ , ,           r τ^k ∙     ∙       1

As n → ∞,by Lemma 2 Hall(1984) the first term of V21n is given by

1

n(n 1)2


a2n(xi,xj) = σ2n + Op(n-3/2h-1),
i j,i6=j


(70)


where σ2l = 21nσ2n.

2Ub2l =


2

n(n 1)


i  i6=j


al(xj, x)al(xi, x)g(x)dx =


n(n 1) XX H2n(xi,xj),
i i6=j


(71)


1 K ʌ 1 1 [Kh(x
H2n(xi,Xj)= h h2 -----


χj ) ʃ Κhi χj )g(χj )dχj
g(χi)


Κh(xi-Xz)-J^Κh(xi-Xz)g(xz)dXz
g(χi)


g(xi)dxi.


E Hn(χi,xj )] = h4 E


xi


xi xj ) ʃ Kh (xi
g(xi)


xj) ʃ Kh(xi xj)g(xj)dxj KKh(xi
g(xi)                  g к

xj)g(xj)dxj μKh(xi xz) ʃKh(xi
g к                  g(xi)


xz) — ʃ Kh(xi xz)g(xz)dxz λ ^(x )d
g
(xi)                     g g i '

xz)g(xz)dxz             2

------------------ I g(xi)dxi


2

''T^∙ .

xi


g(xj)g(xz)dxj dx


=⅛/KPk


xi xj )Kh(χi
g2(xi)


xz ) l rl
----g(x
i)dxi


g(xj )g(xz )dXj dxz + o( ɪ ) =


K (u)K (u + v)
----,------—-—du
g
(xj + hu)


g(xj )g(xj +hu-hz)dxj hdv+o(-) = — f
hh


g2(xj)


2

K(u)K(u + v)du


g2(xj)dxjdv =


' h-1


K K K(u)K(u + v)du dv + o(^)


(72)


By Lemma 3 in Hall(84), then Ub2l is asymptotically Normally distributed N (0, σ22l), where

σ22l ' 2n


2h-1


K (u)K (u + v)du


dv∙


(73)


Hence finally we have that

V2in ~ σ2l + Op(n-3/2h-1) + 2σ2nN(0,1).

(74)


n — 1 P h f (χi)-g(χi) i2
22n n Z-^i
     g(xi)


= l Pi b2n(xi), which is a purely deterministic Bias-squared term, and it will


affect the mean of the asymptotic distribution∙ That is,


1X b2 _ h4 2 f (g(2)(x)¢ 2d , fh4>.                                    r75j

nÇbn 4 μ2J g(x) dx+ o(h )∙                             (75)

Finally we can analyze Vb23l :

2V23n = 2 χf c(xi) f (xi) ! μf (xi) - g(xi) ʌ =    2    X H3ni,            (76)

n i         g(xi)              g(xi)          n(n 1) i

similarly to Hall(1984) define

28



More intriguing information

1. Reform of the EU Sugar Regime: Impacts on Sugar Production in Ireland
2. The name is absent
3. Dendritic Inhibition Enhances Neural Coding Properties
4. HEDONIC PRICES IN THE MALTING BARLEY MARKET
5. Nurses' retention and hospital characteristics in New South Wales, CHERE Discussion Paper No 52
6. ‘Goodwill is not enough’
7. The Prohibition of the Proposed Springer-ProSiebenSat.1-Merger: How much Economics in German Merger Control?
8. BARRIERS TO EFFICIENCY AND THE PRIVATIZATION OF TOWNSHIP-VILLAGE ENTERPRISES
9. Can we design a market for competitive health insurance? CHERE Discussion Paper No 53
10. Macroeconomic Interdependence in a Two-Country DSGE Model under Diverging Interest-Rate Rules