Density Estimation and Combination under Model Ambiguity



A             _ _ 1 T             г» TT 11∕- no n J 1 r∙ , ,           r τ^k ∙     ∙       1

As n → ∞,by Lemma 2 Hall(1984) the first term of V21n is given by

1

n(n 1)2


a2n(xi,xj) = σ2n + Op(n-3/2h-1),
i j,i6=j


(70)


where σ2l = 21nσ2n.

2Ub2l =


2

n(n 1)


i  i6=j


al(xj, x)al(xi, x)g(x)dx =


n(n 1) XX H2n(xi,xj),
i i6=j


(71)


1 K ʌ 1 1 [Kh(x
H2n(xi,Xj)= h h2 -----


χj ) ʃ Κhi χj )g(χj )dχj
g(χi)


Κh(xi-Xz)-J^Κh(xi-Xz)g(xz)dXz
g(χi)


g(xi)dxi.


E Hn(χi,xj )] = h4 E


xi


xi xj ) ʃ Kh (xi
g(xi)


xj) ʃ Kh(xi xj)g(xj)dxj KKh(xi
g(xi)                  g к

xj)g(xj)dxj μKh(xi xz) ʃKh(xi
g к                  g(xi)


xz) — ʃ Kh(xi xz)g(xz)dxz λ ^(x )d
g
(xi)                     g g i '

xz)g(xz)dxz             2

------------------ I g(xi)dxi


2

''T^∙ .

xi


g(xj)g(xz)dxj dx


=⅛/KPk


xi xj )Kh(χi
g2(xi)


xz ) l rl
----g(x
i)dxi


g(xj )g(xz )dXj dxz + o( ɪ ) =


K (u)K (u + v)
----,------—-—du
g
(xj + hu)


g(xj )g(xj +hu-hz)dxj hdv+o(-) = — f
hh


g2(xj)


2

K(u)K(u + v)du


g2(xj)dxjdv =


' h-1


K K K(u)K(u + v)du dv + o(^)


(72)


By Lemma 3 in Hall(84), then Ub2l is asymptotically Normally distributed N (0, σ22l), where

σ22l ' 2n


2h-1


K (u)K (u + v)du


dv∙


(73)


Hence finally we have that

V2in ~ σ2l + Op(n-3/2h-1) + 2σ2nN(0,1).

(74)


n — 1 P h f (χi)-g(χi) i2
22n n Z-^i
     g(xi)


= l Pi b2n(xi), which is a purely deterministic Bias-squared term, and it will


affect the mean of the asymptotic distribution∙ That is,


1X b2 _ h4 2 f (g(2)(x)¢ 2d , fh4>.                                    r75j

nÇbn 4 μ2J g(x) dx+ o(h )∙                             (75)

Finally we can analyze Vb23l :

2V23n = 2 χf c(xi) f (xi) ! μf (xi) - g(xi) ʌ =    2    X H3ni,            (76)

n i         g(xi)              g(xi)          n(n 1) i

similarly to Hall(1984) define

28



More intriguing information

1. The name is absent
2. AGRICULTURAL TRADE IN THE URUGUAY ROUND: INTO FINAL BATTLE
3. PROPOSED IMMIGRATION POLICY REFORM & FARM LABOR MARKET OUTCOMES
4. The name is absent
5. Evidence of coevolution in multi-objective evolutionary algorithms
6. The name is absent
7. Spectral calibration of exponential Lévy Models [1]
8. Flatliners: Ideology and Rational Learning in the Diffusion of the Flat Tax
9. EMU's Decentralized System of Fiscal Policy
10. The name is absent