E(⅛>-⅛i) XXE[hκ(xjF)
∂2fθ (Xi) /∂θ∂θ0 ■
fθ* (Xi) .
(87)
μXj - Xi ∖ ∂2fθ (xi) /∂θ∂θ0 =
h h ) fa (xi)
1/■ g(^i)g(^j )d^id^j =
∂ ∂fθ ^∂2fθ (Xi) /∂θ∂θ0
(88)
I I K (u)------—g— -----g(Xi)g(Xi + hu)dXidu.
f f fa (Xi)
Similarly to Dimitriev-Tarasenko(1973), applying the Cauchy-Schwartz inequality we obtain that
Г !'if d f ∂ d fθ (Xi) /dθdθ 2l ∖r! d(ds(θfa t A 4()
lιm sup E (S2n) ≤ ---- ----g (æ)dæ = E —g(—g(x) ; (89)
n→∞ f fa (Xi) ∖ ∂θ )
further, since Efbn (X) = g(X), applying Fatou-Lebesgue theorem we have that
lim E (S2n) = E μ ds(J.,X) g(X)} . (90)
n→∞ ∂θ
Thus, we have that S2n = Op(1). Taking into account that v^(θ — θ*) = Op(1), which in turn implies that
(b — θ*) = Op(√n), it follows that Ini = S1n(b — θ*) + (b — θ*)0S2n(θ — θ*) is equal to
Ini = Op(-√n) * Op(√n) + Op(√n) * Op(1) * Op(√n) = Op( 1). (91)
Now we have to consider In2 :
In2 =1X f f - ʌ2 fn(Xi) ` (b—e-)0-1-^ XX1K μîj—Xiʌ dln fθ(Xi) dlnfθ(X) (?—«•) `
n2 n £i\ fθ* (Xi) J n(n — 1) i hf h V h J ∂θ ∂θ0 v ’
(92)
` (b — θ∙)0 nʌ XXK μ XjX1 ∖ s(θ,Xi^s(θ,Xj )0j (b — θ∙) = (b — θ∙)0S3n(b — θ∙)0. (93)
n(n — 1)h i j h
Similarly to S2n, it can be shown that S3n is Op (1) . It follows that In2
In2 = Op
(⅛)
Op (1) * Op (√n) = Op (n) .
(94)
Finally, we get that:
KI21 (fb, f'θt ) ' Ini — 7jIn2 = Op( — ) — Opp ( = Op ( ,
θ 2 n2 n n
then it follows that
(nhi/2)KI21 (fθ,fθ^) = (nhi/2)Op ɑɔ = Op(hi/2) →p 0.
(95)
31
More intriguing information
1. The name is absent2. The name is absent
3. The name is absent
4. New issues in Indian macro policy.
5. The Folklore of Sorting Algorithms
6. The Economics of Uncovered Interest Parity Condition for Emerging Markets: A Survey
7. Computational Batik Motif Generation Innovation of Traditi onal Heritage by Fracta l Computation
8. The Social Context as a Determinant of Teacher Motivational Strategies in Physical Education
9. Globalization, Divergence and Stagnation
10. Three Policies to Improve Productivity Growth in Canada