Now, the same expansion used for KI21 can be applied to KI22(fθ*, g):
ki 22(fθ* ,g) =
1 XX μ fθ* (xi) - g(xi) v b (x )
n M g(xi) f
1 X <fθ* (xi) - g(xi)A2 b, ʌ 1 1 τ
- 2n Σ —g(χi)— f fn(xi) = Jn1- 2J∙2∙
(96)
E Jin(fθ* ,g)) = E
K(u) (fθ* (x) — g(x)) g(x + hu)dxdu.
(97)
Applying the same steps used for S2n we can show that
lim sup E
n→∞
(Jin(fθ*,g)) ≤ У
(fθ* (x) — g(x)) g(x)dx = E (fθ* (x) — g(x))
lim E ( Jin(fθ* ,g)) = E (fθ* (x) — g(x)). (98)
n→∞
It follows that J1n(fθ*, g) = Op(1). Repeating the same steps once more for J2n(fθ*, g) we obtain:
E А XX μ fθ∙ (xi) - g(xi) ..^ A = E (t μ fθ- (xi) -g(xi) V2 fn^^d
n i=1 g(xi) g(xi)
=E
(fθ* (xi) - g(xi))2
g(xi)
fn(xi)dxi I = (( K(u) ( ) g^ g( g(x + hu)dxdu,
g(x)
lim sup E (J2n(fθ* ,g)) ≤ ( (fθ∙ (x) — g(x))2 dx
n→∞
lim E (J2n(fθ* ,g))= ( (fθ* (x) — g(x))2 dx > 0.
n→∞
Then also J2n(fθ* ,g) = Op(1). This implies that KI22(fθ* ,g) = Jni — 2 Jn2 = Op(1).
Then it is clear that given assumptions A1-A4, if h → 0,nh→∞then
(99)
(100)
(101)
KI22(fθ* ,g) →p E (fθ* (x) — g(x)) — 2 У (fθ* (x) — g(x))2 dx = E [lnfθ* — lng],
(102)
this implies that nh1/2 KTI 22 →p ∞, hence we need to rescale it by dn = n-1h-1/2 where dn → 0 as
This is embodied in assumption A6:
n →∞.
Finally we can put all terms together:
KI =
(ln
x
KTI22 ` ah1/2Cn
(103)
—~~ —~~ —~~
fTn(x) — lnfbθ(x))fTn(x)dx == KTI1
—-~.
— KTI2
(nh1/2) 1√2σιNι — (nh1/2) 1√2σ2N2 — 2 Cn
KI21(fb, fθ* ) + KI22(fθ* , g)J ,
(104)
since we showed that
32
More intriguing information
1. Les freins culturels à l'adoption des IFRS en Europe : une analyse du cas français2. LIMITS OF PUBLIC POLICY EDUCATION
3. The bank lending channel of monetary policy: identification and estimation using Portuguese micro bank data
4. HEDONIC PRICES IN THE MALTING BARLEY MARKET
5. The name is absent
6. The name is absent
7. The name is absent
8. Retirement and the Poverty of the Elderly in Portugal
9. The name is absent
10. The name is absent