Density Estimation and Combination under Model Ambiguity



True:G(9,3)

h к n 1/4.5

N=1200

t=1000

Gamma
par(1)

par(2)

Normal

par(1)

par(2)

Weibull
par(1)

par(2)

NPQMLE

estim.θ

8.47

3.22

25.49

9.14

0.000025

3.157

st.dev.

. ʌ .
KI(g, f (b))

0.419

0.166

0.0032

0.319

0.241

0.018

0.000007

0.081

0.0207

QMLE

estim.θ

9.01

2.999

26.992

8.998

0.000021

3.166

st.dev.

. ʌ .

Ki(g, f (b))

0.353

0.121

0.0012

0.262

0.208

0.041

0.000056

0.076

0.042

Table 5

True:G(9,3)

h к n 1/4

N=1200

t=1000

Gamma

Normal

Weibull

par(1)

par(2)

par(1)

par(2)

par(1)

par(2)

NPQMLE

estim.θ

8.75

3.108

25.49

8.993

0.000023

3.196

st.dev.

0.455

0.171

0.327

0.255

0.000006

0.085

. ʌ .

KI(g,f (b))

0.0023

0.0174

0.0200

Table 6

38



More intriguing information

1. Innovation Trajectories in Honduras’ Coffee Value Chain. Public and Private Influence on the Use of New Knowledge and Technology among Coffee Growers
2. Migration and employment status during the turbulent nineties in Sweden
3. Parent child interaction in Nigerian families: conversation analysis, context and culture
4. SLA RESEARCH ON SELF-DIRECTION: THEORETICAL AND PRACTICAL ISSUES
5. Crime as a Social Cost of Poverty and Inequality: A Review Focusing on Developing Countries
6. Comparison of Optimal Control Solutions in a Labor Market Model
7. Skill and work experience in the European knowledge economy
8. A methodological approach in order to support decision-makers when defining Mobility and Transportation Politics
9. The demand for urban transport: An application of discrete choice model for Cadiz
10. Tissue Tracking Imaging for Identifying the Origin of Idiopathic Ventricular Arrhythmias: A New Role of Cardiac Ultrasound in Electrophysiology