24
Bibliography
Hill, B. M. (1975). A simple general approach to inference about the tail of a
distribution, Annals of Statistics 3: 1163-1174.
Janicki, A. and Weron, A. (1994). Simulation and Chaotic Behavior of α-Stable
Stochastic Processes, Marcel Dekker.
Kanter, M. (1975). Stable densities under change of scale and total variation
inequalities, Annals of Probability 3: 697-707.
Koutrouvelis, I. A. (1980). Regression-type estimation of the parameters of
stable laws, Journal of the American Statistical Association 75: 918-928.
Kogon, S. M. and Williams, D. B. (1998). Characteristic function based esti-
mation of stable parameters, in R. Adler, R. Feldman, M. Taqqu (eds.),
A Practical Guide to Heavy Tails, Birkhauser, pp. 311-335.
Levy, P. (1925). Calcul des Probabilites, Gauthier Villars.
Mandelbrot, B. B. (1963). The variation of certain speculative prices, Journal
of Business 36: 394-419.
Mantegna, R. N. and Stanley, H. E. (1995). Scaling behavior in the dynamics
of an economic index, Nature 376: 46-49.
McCulloch, J. H. (1986). Simple consistent estimators of stable distribution
parameters, Communications in Statistics - Simulations 15: 1109-1136.
McCulloch, J. H. (1996). Financial applications of stable distributions, in G. S.
Maddala, C. R. Rao (eds.), Handbook of Statistics, Vol. 14, Elsevier, pp.
393-425.
McCulloch, J. H. (1997). Measuring tail thickness to estimate the stable index
α: A critique, Journal of Business & Economic Statistics 15: 74-81.
Mittnik, S., Doganoglu, T., and Chenyao, D. (1999). Computing the probability
density function of the stable Paretian distribution, Mathematical and
Computer Modelling 29: 235-240.
Mittnik, S., Rachev, S. T., Doganoglu, T. and Chenyao, D. (1999). Maxi-
mum likelihood estimation of stable Paretian models, Mathematical and
Computer Modelling 29: 275-293.
Nolan, J. P. (1997). Numerical calculation of stable densities and distribution
functions, Communications in Statistics - Stochastic Models 13: 759-774.