Testing the Information Matrix Equality with Robust Estimators



Further,


EFn(Y) = γnφ(0),
E
Fn(Y2)=1+γn + o(γn),
E
Fn(Y 3) = 6γnφ(0) + o(γn),
E
Fn(Y4)=3+6γn+o(γn).

Therefore, letting ( m 1 ,m 2 ,m 3) ' = Wm ( Y ; θn ),
and, upon replacing
γn with ey∕n,

EFn ( m 3)  = EFn

I
--X

sq I

Jλ

×---z

EFn ( m 2)  = EFn

I                                           I

X---X

sq I

Jλ
×---z

EFn ( m^ 1) = EFn

IX )

_

3

_

2

_


6EFn


3EFn


(Y - βn λ

σn J


2

+3=o(γn),


Y—βn = 3 Ynφ (0) + О ( Yn ),


σn


1 - dEFn ( m 3 ) = o ( Yn ),


0

b = lim ∕EFΓ[W [ Wm ( Y ; θn, )] = e   3 φ (0)

n→∞                      0

Hence bV+b = -⅛ e2.

Appendix C

Local asymptotic power of score test

First, we review briefly how the local asymptotic power of the score test
against specified alternatives can be defined. By an appropriate extension
of
f ( ; ), let the density under the alternative be f ( y ; ω ), depending on
an extended parameter
ω, and let s ( y ; ω ) = ∂ω log f ( У ; ω ). Write the
null hypothesis as
H0 : ω Ω0, where Ω0 is a restricted parameter space
(essentially, Θ). Let
ω be the restricted ML estimator (essentially, θ), i.e. ω
solves

n

max    log f (Yi; ω).

ωΩo

i=1

31



More intriguing information

1. The name is absent
2. The Impact of Hosting a Major Sport Event on the South African Economy
3. The name is absent
4. Impact of Ethanol Production on U.S. and Regional Gasoline Prices and On the Profitability of U.S. Oil Refinery Industry
5. The name is absent
6. AN IMPROVED 2D OPTICAL FLOW SENSOR FOR MOTION SEGMENTATION
7. An Economic Analysis of Fresh Fruit and Vegetable Consumption: Implications for Overweight and Obesity among Higher- and Lower-Income Consumers
8. Rent-Seeking in Noxious Weed Regulations: Evidence from US States
9. Computational Batik Motif Generation Innovation of Traditi onal Heritage by Fracta l Computation
10. The name is absent