Further,
EFn(Y) = γnφ(0),
EFn(Y2)=1+γn + o(γn),
EFn(Y 3) = 6γnφ(0) + o(γn),
EFn(Y4)=3+6γn+o(γn).
Therefore, letting ( m 1 ,m 2 ,m 3) ' = Wm ( Y ; θn ),
and, upon replacing γn with e∣y∕n,
EFn ( m 3) = EFn |
I sq I Jλ ×---z |
EFn ( m 2) = EFn |
I I X---X sq I Jλ |
EFn ( m^ 1) = EFn |
IX ) |
_
3
_
2
_
6EFn
3EFn
(Y - βn λ
∖ σn J
2
+3=o(γn),
Y—βn = 3 Ynφ (0) + О ( Yn ),
σn
1 - dEFn ( m 3 ) = o ( Yn ),
0
b = lim ∖∕EFΓ[W [ Wm ( Y ; θn, )] = e 3 φ (0)
n→∞ 0
Hence bV+b = -⅛ e2.
Appendix C
Local asymptotic power of score test
First, we review briefly how the local asymptotic power of the score test
against specified alternatives can be defined. By an appropriate extension
of f ( ■ ; ■ ), let the density under the alternative be f ( y ; ω ), depending on
an extended parameter ω, and let s ( y ; ω ) = — ∂ω log f ( У ; ω ). Write the
null hypothesis as H0 : ω ∈ Ω0, where Ω0 is a restricted parameter space
(essentially, Θ). Let ω be the restricted ML estimator (essentially, θ), i.e. ω
solves
n
max log f (Yi; ω).
ω∈Ωo
i=1
31
More intriguing information
1. The name is absent2. Three Strikes and You.re Out: Reply to Cooper and Willis
3. NATURAL RESOURCE SUPPLY CONSTRAINTS AND REGIONAL ECONOMIC ANALYSIS: A COMPUTABLE GENERAL EQUILIBRIUM APPROACH
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. The effect of classroom diversity on tolerance and participation in England, Sweden and Germany
9. The duration of fixed exchange rate regimes
10. Strategic Investment and Market Integration