Further,
EFn(Y) = γnφ(0),
EFn(Y2)=1+γn + o(γn),
EFn(Y 3) = 6γnφ(0) + o(γn),
EFn(Y4)=3+6γn+o(γn).
Therefore, letting ( m 1 ,m 2 ,m 3) ' = Wm ( Y ; θn ),
and, upon replacing γn with e∣y∕n,
EFn ( m 3) = EFn |
I sq I Jλ ×---z |
EFn ( m 2) = EFn |
I I X---X sq I Jλ |
EFn ( m^ 1) = EFn |
IX ) |
_
3
_
2
_
6EFn
3EFn
(Y - βn λ
∖ σn J
2
+3=o(γn),
Y—βn = 3 Ynφ (0) + О ( Yn ),
σn
1 - dEFn ( m 3 ) = o ( Yn ),
0
b = lim ∖∕EFΓ[W [ Wm ( Y ; θn, )] = e 3 φ (0)
n→∞ 0
Hence bV+b = -⅛ e2.
Appendix C
Local asymptotic power of score test
First, we review briefly how the local asymptotic power of the score test
against specified alternatives can be defined. By an appropriate extension
of f ( ■ ; ■ ), let the density under the alternative be f ( y ; ω ), depending on
an extended parameter ω, and let s ( y ; ω ) = — ∂ω log f ( У ; ω ). Write the
null hypothesis as H0 : ω ∈ Ω0, where Ω0 is a restricted parameter space
(essentially, Θ). Let ω be the restricted ML estimator (essentially, θ), i.e. ω
solves
n
max log f (Yi; ω).
ω∈Ωo
i=1
31
More intriguing information
1. Distortions in a multi-level co-financing system: the case of the agri-environmental programme of Saxony-Anhalt2. SLA RESEARCH ON SELF-DIRECTION: THEORETICAL AND PRACTICAL ISSUES
3. Behavior-Based Early Language Development on a Humanoid Robot
4. Incorporating global skills within UK higher education of engineers
5. IMPLICATIONS OF CHANGING AID PROGRAMS TO U.S. AGRICULTURE
6. Design and investigation of scalable multicast recursive protocols for wired and wireless ad hoc networks
7. Anti Microbial Resistance Profile of E. coli isolates From Tropical Free Range Chickens
8. The name is absent
9. The name is absent
10. Optimal Rent Extraction in Pre-Industrial England and France – Default Risk and Monitoring Costs