Testing the Information Matrix Equality with Robust Estimators



where the last element follows from


tη(u) = φ(u) [1 + 4(u4 - 2u2 - 1)] + o(η).

See e.g. Johnson et al. (1995, p. 375). The information matrix, evaluated
at
σ =1 andη =0, is


E [s (y ; β, 1, 0) s (y ; β, 1, 0) ']


u3 - u


(u2 - 1)2


u5 - 2u3 - u

u 6 - 3 u 4+u 2 + 1

4

( u4 - 2 u 2 -1)2

16       )


0

2

7

2


(27)


Since the first two elements of s equal zero at the restricted ML estimator,
and since
J 33 = 2/3, the score test statistic equals

s=n .,

24     ,

which is the ‘kurtosis part’ of the Jarque-Bera statistic (12).

Let Fn be Ft(pn) with pn = η-1 = √ne. We then have that η0,n = 0,
and, from (17),


σ02,n =1+2ηn + o(ηn),

since Σ1 = 4 for the ML estimator. Using (18) and (19), with Σ1 =4,it
follows that


EFn [s(Y; β0,n0,n, 0)] =


0
o(ηn)
2 ηn + o ( ηn )


Hence, replacing ηn with en,


b = lim VEEFn [ s ( Y ; βo ,n, σ o ,n, 0)] = e
n→∞


0

0

3

2


and, using (27),


δ = bJ-1 b = 3 e2.


33




More intriguing information

1. The changing face of Chicago: demographic trends in the 1990s
2. The Modified- Classroom ObservationScheduletoMeasureIntenticnaCommunication( M-COSMIC): EvaluationofReliabilityandValidity
3. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.
4. The name is absent
5. Analyse des verbraucherorientierten Qualitätsurteils mittels assoziativer Verfahren am Beispiel von Schweinefleisch und Kartoffeln
6. The name is absent
7. The name is absent
8. Contribution of Economics to Design of Sustainable Cattle Breeding Programs in Eastern Africa: A Choice Experiment Approach
9. Passing the burden: corporate tax incidence in open economies
10. Implementation of Rule Based Algorithm for Sandhi-Vicheda Of Compound Hindi Words