C.2 Skewed normal alternative
The skewed-normal log-density is
∣ -2 log(2π) - log σ - u2, if y ≤ β;
log f (У ; β,σ,γ) = < 2
[ - 1 log(2 π ) - log σ + log(1 + γ ) - uγ, if y>β ;
where u = (y - β)/σ and uγ = u(1 + γ). The score function, evaluated at
Y = 0, is
(u∕σ
( u2 - 1)/σ
I(y > β)(u2 - 1)
Now let Fn be skewed normal with β = 0, σ = 1, and γn = e∕√n > 0.
Then, γоn = 0, and by the results of Appendix B.2,
β0 ,n = EFn ( Y ) = γnφ (0),
σ о ,n = 1+^2^+o ( γn ) '
It follows that
∖
I(Y>βо,n)} j
EFn [ s ( Y ; β0 ,n,σ 0 ,n, 0)] = -
0
o ( Yn ) .
EFn { [(Y-вП)2 - 1
The third element in parentheses is
∞ , Yn). - β0n ʌ 2 dφw - 1 + Φ(βоn)
∙M 0 ,n ∖ σ 0 ,n /
= (----—) (ββ0,nφ(β0,n) + 1 - ф(β0,n)-------2 0П ’ φ(β0,n) - 1
∖ σ 0 ,n J σ 0 ,n
+H β0 ,n ) + o ( γη )
- 2Yn (φ(0)) - 1 + Ф(β0,n)
= (1 + γn )( γn (φ (0)) +1 - Ф( β0 ,n ))
+O ( Yn )
= Yn (I - (φ(0))2) + 0(Yn)
= Yn ( π-β ) + 0 ( Yn ).
34
More intriguing information
1. The name is absent2. Should informal sector be subsidised?
3. The name is absent
4. The name is absent
5. Stillbirth in a Tertiary Care Referral Hospital in North Bengal - A Review of Causes, Risk Factors and Prevention Strategies
6. The name is absent
7. The name is absent
8. The name is absent
9. Enterpreneurship and problems of specialists training in Ukraine
10. The name is absent