Testing the Information Matrix Equality with Robust Estimators



we obtain


EFn


Y - βn
σn


-Σ3κn + o(κnn),


f 17 y - βn V
EFnσ .

f 17 y - βn 73
EFn [k~τr).
P ff Y - βn y'
EFn l σ


1-4λn + o(κnn),


κn -3κn + o(κn, λn),


3+λn - 12Σ4λn + o(κnn).


Letting ( m 1 ,m 2 ,m 3) = Wm ( Y ; θn ), this results in


EFn (m 1) = n(4 + d) + o(κn, λn)

EFn (m2) = Kn + O(Kn, λn)

EFn (m13) = λn + O(Kn, λn)


Note that, from (20),


_    1 E [(Z4 - 6Z2 + 3)Pc(Z)]

=    12       E [ZPc(Z)]

= -2Σ4,


and thus EFn [rn 1] = o(κn, λn). Since κn = k/yfn and λn = l∕√n, we obtain


b = lim nEEFn [ Wm ( Y ; θn )] =
n→∞


from which it is straightforward that


+ k2 l2

δ=bv+b=_+-.


Acknowledgements

Financial support from the Flemish Fund for Scientific Research (grant
G.0366.01) is gratefully acknowledged.


37




More intriguing information

1. Regional Intergration and Migration: An Economic Geography Model with Hetergenous Labour Force
2. Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test
3. Urban Green Space Policies: Performance and Success Conditions in European Cities
4. Evolution of cognitive function via redeployment of brain areas
5. The name is absent
6. The name is absent
7. The Social Context as a Determinant of Teacher Motivational Strategies in Physical Education
8. Problems of operationalizing the concept of a cost-of-living index
9. The name is absent
10. The name is absent
11. TRADE NEGOTIATIONS AND THE FUTURE OF AMERICAN AGRICULTURE
12. Fiscal Rules, Fiscal Institutions, and Fiscal Performance
13. EU enlargement and environmental policy
14. The name is absent
15. The name is absent
16. The name is absent
17. The name is absent
18. La mobilité de la main-d'œuvre en Europe : le rôle des caractéristiques individuelles et de l'hétérogénéité entre pays
19. The Clustering of Financial Services in London*
20. Climate change, mitigation and adaptation: the case of the Murray–Darling Basin in Australia