Testing the Information Matrix Equality with Robust Estimators



Hence


b = lim nEEFs [ s ( Y ; β0 ,n 0 ,n, 0)]
n→∞

0

=e 0

\ 1 -∏
\ 2 π


The information matrix is

J = E [s (y ;0, 1, 0) s (y ;0, 1, 0)' ]

1  0  Eφ[u(u2 1)I(u > 0)] \

 2  Eφ[(u2 1)21(u> 0)]

■   ■  Eφ[(u2 1)21(u> 0)] J

10φ(0) \

021 ,

φ(0)  1    1

wherefrom δ = b,J 1 b = π-1 e2.

2π


C.3 Tilted normal alternative


Expanding f(y; β, σ, κ, λ) around κ =0andλ = 0 gives


f( У ;β,σ,κ,λ ) = 1 φ ( u )
σ


κλ

1 + ^( u — 3 u ) + 24( u — 6 u + 3)


+ o(κ, λ),


from which the moments given in (15) follow. The score function, evaluated
at
κ = λ =0, is


s(y; β, σ, 0, 0)


σ u \

u2 -1
σ
u3 3 u
6
u4 6u 2+3
\     24     /


The information matrix is


J = E [s ( y ; β, 1, 0, 0) s ( y ; β, 1, 0, 0) ']

/ 1 0 0   0 \

0200

=     0 0 1  0    

V 0 0 0 24 J


35




More intriguing information

1. Analyse des verbraucherorientierten Qualitätsurteils mittels assoziativer Verfahren am Beispiel von Schweinefleisch und Kartoffeln
2. The name is absent
3. Are class size differences related to pupils’ educational progress and classroom processes? Findings from the Institute of Education Class Size Study of children aged 5-7 Years
4. The name is absent
5. The name is absent
6. The name is absent
7. The name is absent
8. Macroeconomic Interdependence in a Two-Country DSGE Model under Diverging Interest-Rate Rules
9. LAND-USE EVALUATION OF KOCAELI UNIVERSITY MAIN CAMPUS AREA
10. A Critical Examination of the Beliefs about Learning a Foreign Language at Primary School