Testing the Information Matrix Equality with Robust Estimators



Hence


b = lim nEEFs [ s ( Y ; β0 ,n 0 ,n, 0)]
n→∞

0

=e 0

\ 1 -∏
\ 2 π


The information matrix is

J = E [s (y ;0, 1, 0) s (y ;0, 1, 0)' ]

1  0  Eφ[u(u2 1)I(u > 0)] \

 2  Eφ[(u2 1)21(u> 0)]

■   ■  Eφ[(u2 1)21(u> 0)] J

10φ(0) \

021 ,

φ(0)  1    1

wherefrom δ = b,J 1 b = π-1 e2.

2π


C.3 Tilted normal alternative


Expanding f(y; β, σ, κ, λ) around κ =0andλ = 0 gives


f( У ;β,σ,κ,λ ) = 1 φ ( u )
σ


κλ

1 + ^( u — 3 u ) + 24( u — 6 u + 3)


+ o(κ, λ),


from which the moments given in (15) follow. The score function, evaluated
at
κ = λ =0, is


s(y; β, σ, 0, 0)


σ u \

u2 -1
σ
u3 3 u
6
u4 6u 2+3
\     24     /


The information matrix is


J = E [s ( y ; β, 1, 0, 0) s ( y ; β, 1, 0, 0) ']

/ 1 0 0   0 \

0200

=     0 0 1  0    

V 0 0 0 24 J


35




More intriguing information

1. Does Market Concentration Promote or Reduce New Product Introductions? Evidence from US Food Industry
2. Activation of s28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization
3. Improvements in medical care and technology and reductions in traffic-related fatalities in Great Britain
4. O funcionalismo de Sellars: uma pesquisa histδrica
5. Healthy state, worried workers: North Carolina in the world economy
6. The ultimate determinants of central bank independence
7. American trade policy towards Sub Saharan Africa –- a meta analysis of AGOA
8. The name is absent
9. The name is absent
10. Gianluigi Zenti, President, Academia Barilla SpA - The Changing Consumer: Demanding but Predictable