Testing the Information Matrix Equality with Robust Estimators



Hence


b = lim nEEFs [ s ( Y ; β0 ,n 0 ,n, 0)]
n→∞

0

=e 0

\ 1 -∏
\ 2 π


The information matrix is

J = E [s (y ;0, 1, 0) s (y ;0, 1, 0)' ]

1  0  Eφ[u(u2 1)I(u > 0)] \

 2  Eφ[(u2 1)21(u> 0)]

■   ■  Eφ[(u2 1)21(u> 0)] J

10φ(0) \

021 ,

φ(0)  1    1

wherefrom δ = b,J 1 b = π-1 e2.

2π


C.3 Tilted normal alternative


Expanding f(y; β, σ, κ, λ) around κ =0andλ = 0 gives


f( У ;β,σ,κ,λ ) = 1 φ ( u )
σ


κλ

1 + ^( u — 3 u ) + 24( u — 6 u + 3)


+ o(κ, λ),


from which the moments given in (15) follow. The score function, evaluated
at
κ = λ =0, is


s(y; β, σ, 0, 0)


σ u \

u2 -1
σ
u3 3 u
6
u4 6u 2+3
\     24     /


The information matrix is


J = E [s ( y ; β, 1, 0, 0) s ( y ; β, 1, 0, 0) ']

/ 1 0 0   0 \

0200

=     0 0 1  0    

V 0 0 0 24 J


35




More intriguing information

1. The name is absent
2. Dynamiques des Entreprises Agroalimentaires (EAA) du Languedoc-Roussillon : évolutions 1998-2003. Programme de recherche PSDR 2001-2006 financé par l'Inra et la Région Languedoc-Roussillon
3. Using Surveys Effectively: What are Impact Surveys?
4. THE EFFECT OF MARKETING COOPERATIVES ON COST-REDUCING PROCESS INNOVATION ACTIVITY
5. EMU: some unanswered questions
6. The name is absent
7. The name is absent
8. Globalization and the benefits of trade
9. The constitution and evolution of the stars
10. The name is absent