Testing the Information Matrix Equality with Robust Estimators



to admit the expansion

1n

M = n∑ m(Xi,Yi;


i=1


θ ) + ∂θmm ( Xi,Yi ; θ ))


+ op(n-1/2).


(2)


The estimator θ is B-robust (Hampel et al., 1986) when IF( ∙, ∙ ; θ; K ; Fθ ) is
bounded. Assuming the existence of

D ( θ ) = E [ ɪ m ( X,Y ; θ )],

we have

1n

-∑ m ( Xi,Yi ;θ ) → D (θ )                 (3)

i=1

Now, let

ξ ( X, Y ; θ ) = m ( X, Y ; θ ) + D ( θ )IF( X, Y ; θ; K, Fθ ).          (4)

Then, combining (1)-(4),

1n

M^ = n ∑ ξ ( Xi, Yi ; θ ) + Op ( n-1 / 2).                  (5)

i=1

So we obtain

x7^l → N(0 ,V ),

with

V = E [ξ (X,Y ; θ) ξ (X,Y ; θ) '].

Let V+ be a consistent estimator of V+, the Moore-Penrose inverse of V,
and define the test statistic

T = nM '1V+M^.

Then, if the parametric model is correctly specified,

d2
T → χq2,



More intriguing information

1. Human Resource Management Practices and Wage Dispersion in U.S. Establishments
2. Segmentación en la era de la globalización: ¿Cómo encontrar un segmento nuevo de mercado?
3. The name is absent
4. Delayed Manifestation of T ransurethral Syndrome as a Complication of T ransurethral Prostatic Resection
5. Ongoing Emergence: A Core Concept in Epigenetic Robotics
6. A model-free approach to delta hedging
7. Indirect Effects of Pesticide Regulation and the Food Quality Protection Act
8. Staying on the Dole
9. Determinants of U.S. Textile and Apparel Import Trade
10. The name is absent