Testing the Information Matrix Equality with Robust Estimators



To simplify the notations and calculations that follow we transform M in
order to diagonalise
V .Let

1+d 0 -d

W=  010,

-101

where

Eφ [(u4 - 6u2 + 3)(u2 - 1 - 2IF)] _ 1    1    ( 4

Eφ ((u4 - 6u2 + 3)2)       = 2 - 12 Eφ u

(8)


(9)


Then

1

WM = —
σ2

- 1 - d(μ4 - 6μ2 + 3)
ʌ        O .ʌ

μ3 - 3μ1

μ4 — 6 μ2 + 3


1 / u2 - 1 - 2IF (u; σ; Φ) - d (u4 - 6u2 + 3) ʌ

( Y ; θ ) = -2                  u3 - 3 u                  ,

σ               u4 - 6u2 +3

and V = WVW' is given by

1
V = σ4diag[A, 6, 24],

where

A = -8 + 4ASV(^) + 2E (u4IF) - 1 [E (u4IF)]2 .        (10)

We conclude that the IM test statistic in the normal model can be written
as the sum of three (asymptotically independent) statistics,

A+ (μ2 - 1 - d(μ4 - 6μ2 + 3))2 + 6(μ3 - 3μ1)2

(11)


+ 24(μ4 - 6μ2 + 3)2 .



More intriguing information

1. Applications of Evolutionary Economic Geography
2. Co-ordinating European sectoral policies against the background of European Spatial Development
3. The InnoRegio-program: a new way to promote regional innovation networks - empirical results of the complementary research -
4. The name is absent
5. Solidaristic Wage Bargaining
6. The name is absent
7. On the Desirability of Taxing Charitable Contributions
8. The name is absent
9. CAN CREDIT DEFAULT SWAPS PREDICT FINANCIAL CRISES? EMPIRICAL STUDY ON EMERGING MARKETS
10. The name is absent