Testing the Information Matrix Equality with Robust Estimators



wherefrom, using (4),

ξ ( Y ; θ )= 1

σ2


u2 - 1

u3 - 3u
u
4 - 5u2 +2


2 / IF( Y ; ^; Fθ )

⅛ ( θ

σ ∖ IF( Y ; ^; Fθ )


Note that ξ ( Y ; θ ) does not depend on IF( Y ; /; Fθ ). Take ^ to be equivariant,
i.e.
σ ( aY1 + b, , aYn+b ) = ασ ( Y1, ∙ ∙ ∙ , Yn ), so IF( Y ; ^; Fθ ) = σ IF( u ; σ; Φ)
and

1 /    u2 - 1 - 2IF(u; ^; Φ)

ξ ( Y ; θ ) = — I           u3 3 u

(6)


σ \—4 5u2 + 2 2IF(u; ^; Φ)

A straightforward calculation shows that V = σ-4B , where B is a 3 × 3
matrix with elements
Bij given by

B u = 2 + 4ASV( ^),

B22 =6,

B33 = 46 + 4ASV( ^) 4 E φ ( u 4IF),

B13 = 10 + 4ASV( ^) 2 E φ ( u 4IF) = B 31,

B12 = B21 = B23 = B32 =0,

with IF = IF(u; ^; Φ) and ASV(σ) = Eφ(IF2), the asymptotic variance of
σ when σ = 1. Note that V does not depend on the estimator β that is

chosen. For a given estimator θ = (β, σ)1, let

ʌ .

u i = ( Yi — β)/σ,


n

-1 j
μj = n X"i,

i=1


. ) ʌ

and write M as σ 2 N with

/ μ2 1

I          .ʌ          n .ʌ

I μ3 3 μ1

ξ μ4 — 5μ2 + 2

Taking V+ equal to V+ with σ replaced by ^ yields the test statistic

T = nM '1V+MM = nN^ B+N^.

(7)




More intriguing information

1. A MARKOVIAN APPROXIMATED SOLUTION TO A PORTFOLIO MANAGEMENT PROBLEM
2. An institutional analysis of sasi laut in Maluku, Indonesia
3. Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test
4. Voluntary Teaming and Effort
5. From Aurora Borealis to Carpathians. Searching the Road to Regional and Rural Development
6. Do the Largest Firms Grow the Fastest? The Case of U.S. Dairies
7. The name is absent
8. Should Local Public Employment Services be Merged with the Local Social Benefit Administrations?
9. ENVIRONMENTAL POLICY: THE LEGISLATIVE AND REGULATORY AGENDA
10. Multiple Arrhythmogenic Substrate for Tachycardia in a