(a) Underlying (—), trend (--), prediction of abrupt (b) Risk-free ∆ tracking (—) and ∆ tracking (- -),
change locations (l) and their directions (o) prediction of abrupt change locations (l)
inria-00457222, version 1 - 16 Feb 2010
(c) Zoom on (b) (d) Zoom on (b)
Figure 4: Example 1 (continued): CFU9PY3500
[14] Fliess M., Join C., Sira-Ramirez H., Non-linear estimation is
easy, Int. J. Model. Identif. Control, 4, 12-27, 2008 (available at
http://hal.inria.fr/inria-00158855/en/).
[15] Garcia Coiiado F.A., d’Andrea-Novei B., Fliess M., Mounier
H., Analyse frequentielle des derivateurs algébriques, XXIIe Coll. GRETSI,
Dijon, 2009 (available at http://hal.inria.fr/inria-00394972/en/).
[16] Haug E.G., Derivatives: Models on Models, Wiley, 2007.
[17] Haug E.G., Taieb N.N., Why we have never used the Black-Scholes-
Merton option pricing formula, Working paper (5th version), 2009 (available
at http://ssrn.com/abstract=1012075).
[18] Huii J.C., Options, Futures, and Other Derivatives (7th ed.), Prentice
Hall, 2007.
[19] Kirkpatrick C.D., Dahiquist J.R., Technical Analysis: The Complete
Resource for Financial Market Technicians (2nd ed.), FT Press, 2010.
[20] Mandeibrot N., Hudson R.L., The (Mis)Behavior of Markets: A Frac-
tal View of Risk, Ruin, and Reward, Basic Books, 2004.