Technological progress, organizational change and the size of the Human Resources Department



α                                                                          ξ(1 α)

= ξ-a /adʌ ξ-α a⅛Eπ-δ⅛⅛L'    P (1 - δ> (1 - . ʌ     (21)

ξ ξ J                         (1 + β - 2βδ)2 J

α(ξ + θ) ξ         αη                                α(ξ+η + θ) ξ

(α (ξ + θ) - ξ) α-ξ (an)α-ξ (α (ξ + П + θ) - ξ)   ξ-α


β ξζ — a τ 1 ʌ aad ξ-α λ-L- ,. ξ(1-α) τ- α(1-ξ) ββ (1 δ) (1 βδ)δ ξ-

=          L--L - 1 + all         A ξ-α E (1δ)(ξ-α) L ξ-α                 (22-    (22)

1 β V ξ         /U/                    к (1 + β 2βδ)2 )

ξ-α(ξ + θ)         αη                              α(ξ+η + θ) ξ

(a (ξ + θ) - ξ) ξα   (an)a—ξ (a (ξ + n + θ) - ξ) ξα

The following result can then be stated:


Proposition 2 Provided the following restrictions on the parameters hold:


1 1 + β .
δ <  —   and


ξ

<—< < a < ξ if n > 0
ξ + θ


ξ

a < ξ+θ < ξ if n0


there exists a unique steady state of the model with 0 <T< 1 and 0 <ρ< 1 where
the values of the different variables are given by the expressions (15)-(22).


Proof. The steady-state values of the variables are obtained in Appendix 7.2.

Concerning the restrictions on the parameters, given the expression obtained for T :


T 1 - βδ

1 + β - 2βδ


the fact that 0 < T < 1 implies 0 < 1+β-2βδ < 1, and since the numerator is positive
(because
0 <β< 1 and 0 <δ < 1) we must have (for the first inequality to hold):


1+β

1 + β - 2βδ> 0 δ< +~p


while the second inequality is always verified (being δ<1). Given the expression
obtained for
ρ:


an


P a (ξ + n + θ) - ξ

then, the fact that 0 < ρ < 1 implies 0 < α(ξ+α+θ)-ξ < 1. At this point it is necessary
to distinguish the case
n> 0 and the case n< 0.Ifn> 0 the restriction 0 <ρ< 1
requires:


ξ

a (ξ + n + θ) - ξ> 0 a> -------

ξ+ n + θ


and also:


ξ

an<a (ξ + n + θ) - ξ a> ξ+θ


17




More intriguing information

1. Evidence on the Determinants of Foreign Direct Investment: The Case of Three European Regions
2. Convergence in TFP among Italian Regions - Panel Unit Roots with Heterogeneity and Cross Sectional Dependence
3. Cultural Diversity and Human Rights: a propos of a minority educational reform
4. The name is absent
5. Magnetic Resonance Imaging in patients with ICDs and Pacemakers
6. Towards Teaching a Robot to Count Objects
7. The name is absent
8. Optimal Rent Extraction in Pre-Industrial England and France – Default Risk and Monitoring Costs
9. The name is absent
10. The name is absent