Technological progress, organizational change and the size of the Human Resources Department



α                                                                          ξ(1 α)

= ξ-a /adʌ ξ-α a⅛Eπ-δ⅛⅛L'    P (1 - δ> (1 - . ʌ     (21)

ξ ξ J                         (1 + β - 2βδ)2 J

α(ξ + θ) ξ         αη                                α(ξ+η + θ) ξ

(α (ξ + θ) - ξ) α-ξ (an)α-ξ (α (ξ + П + θ) - ξ)   ξ-α


β ξζ — a τ 1 ʌ aad ξ-α λ-L- ,. ξ(1-α) τ- α(1-ξ) ββ (1 δ) (1 βδ)δ ξ-

=          L--L - 1 + all         A ξ-α E (1δ)(ξ-α) L ξ-α                 (22-    (22)

1 β V ξ         /U/                    к (1 + β 2βδ)2 )

ξ-α(ξ + θ)         αη                              α(ξ+η + θ) ξ

(a (ξ + θ) - ξ) ξα   (an)a—ξ (a (ξ + n + θ) - ξ) ξα

The following result can then be stated:


Proposition 2 Provided the following restrictions on the parameters hold:


1 1 + β .
δ <  —   and


ξ

<—< < a < ξ if n > 0
ξ + θ


ξ

a < ξ+θ < ξ if n0


there exists a unique steady state of the model with 0 <T< 1 and 0 <ρ< 1 where
the values of the different variables are given by the expressions (15)-(22).


Proof. The steady-state values of the variables are obtained in Appendix 7.2.

Concerning the restrictions on the parameters, given the expression obtained for T :


T 1 - βδ

1 + β - 2βδ


the fact that 0 < T < 1 implies 0 < 1+β-2βδ < 1, and since the numerator is positive
(because
0 <β< 1 and 0 <δ < 1) we must have (for the first inequality to hold):


1+β

1 + β - 2βδ> 0 δ< +~p


while the second inequality is always verified (being δ<1). Given the expression
obtained for
ρ:


an


P a (ξ + n + θ) - ξ

then, the fact that 0 < ρ < 1 implies 0 < α(ξ+α+θ)-ξ < 1. At this point it is necessary
to distinguish the case
n> 0 and the case n< 0.Ifn> 0 the restriction 0 <ρ< 1
requires:


ξ

a (ξ + n + θ) - ξ> 0 a> -------

ξ+ n + θ


and also:


ξ

an<a (ξ + n + θ) - ξ a> ξ+θ


17




More intriguing information

1. Aktive Klienten - Aktive Politik? (Wie) Läßt sich dauerhafte Unabhängigkeit von Sozialhilfe erreichen? Ein Literaturbericht
2. Sector Switching: An Unexplored Dimension of Firm Dynamics in Developing Countries
3. The problem of anglophone squint
4. The name is absent
5. The Role of Land Retirement Programs for Management of Water Resources
6. Valuing Access to our Public Lands: A Unique Public Good Pricing Experiment
7. The name is absent
8. Portuguese Women in Science and Technology (S&T): Some Gender Features Behind MSc. and PhD. Achievement
9. Modeling industrial location decisions in U.S. counties
10. Monopolistic Pricing in the Banking Industry: a Dynamic Model
11. Measuring Semantic Similarity by Latent Relational Analysis
12. The name is absent
13. The name is absent
14. Can we design a market for competitive health insurance? CHERE Discussion Paper No 53
15. Restricted Export Flexibility and Risk Management with Options and Futures
16. Healthy state, worried workers: North Carolina in the world economy
17. The Variable-Rate Decision for Multiple Inputs with Multiple Management Zones
18. The name is absent
19. Non-causality in Bivariate Binary Panel Data
20. Unilateral Actions the Case of International Environmental Problems