Technological progress, organizational change and the size of the Human Resources Department



α                                                                          ξ(1 α)

= ξ-a /adʌ ξ-α a⅛Eπ-δ⅛⅛L'    P (1 - δ> (1 - . ʌ     (21)

ξ ξ J                         (1 + β - 2βδ)2 J

α(ξ + θ) ξ         αη                                α(ξ+η + θ) ξ

(α (ξ + θ) - ξ) α-ξ (an)α-ξ (α (ξ + П + θ) - ξ)   ξ-α


β ξζ — a τ 1 ʌ aad ξ-α λ-L- ,. ξ(1-α) τ- α(1-ξ) ββ (1 δ) (1 βδ)δ ξ-

=          L--L - 1 + all         A ξ-α E (1δ)(ξ-α) L ξ-α                 (22-    (22)

1 β V ξ         /U/                    к (1 + β 2βδ)2 )

ξ-α(ξ + θ)         αη                              α(ξ+η + θ) ξ

(a (ξ + θ) - ξ) ξα   (an)a—ξ (a (ξ + n + θ) - ξ) ξα

The following result can then be stated:


Proposition 2 Provided the following restrictions on the parameters hold:


1 1 + β .
δ <  —   and


ξ

<—< < a < ξ if n > 0
ξ + θ


ξ

a < ξ+θ < ξ if n0


there exists a unique steady state of the model with 0 <T< 1 and 0 <ρ< 1 where
the values of the different variables are given by the expressions (15)-(22).


Proof. The steady-state values of the variables are obtained in Appendix 7.2.

Concerning the restrictions on the parameters, given the expression obtained for T :


T 1 - βδ

1 + β - 2βδ


the fact that 0 < T < 1 implies 0 < 1+β-2βδ < 1, and since the numerator is positive
(because
0 <β< 1 and 0 <δ < 1) we must have (for the first inequality to hold):


1+β

1 + β - 2βδ> 0 δ< +~p


while the second inequality is always verified (being δ<1). Given the expression
obtained for
ρ:


an


P a (ξ + n + θ) - ξ

then, the fact that 0 < ρ < 1 implies 0 < α(ξ+α+θ)-ξ < 1. At this point it is necessary
to distinguish the case
n> 0 and the case n< 0.Ifn> 0 the restriction 0 <ρ< 1
requires:


ξ

a (ξ + n + θ) - ξ> 0 a> -------

ξ+ n + θ


and also:


ξ

an<a (ξ + n + θ) - ξ a> ξ+θ


17




More intriguing information

1. Death as a Fateful Moment? The Reflexive Individual and Scottish Funeral Practices
2. Innovation in commercialization of pelagic fish: the example of "Srdela Snack" Franchise
3. A production model and maintenance planning model for the process industry
4. The name is absent
5. Social Cohesion as a Real-life Phenomenon: Exploring the Validity of the Universalist and Particularist Perspectives
6. The name is absent
7. The name is absent
8. Concerns for Equity and the Optimal Co-Payments for Publicly Provided Health Care
9. ARE VOLATILITY EXPECTATIONS CHARACTERIZED BY REGIME SHIFTS? EVIDENCE FROM IMPLIED VOLATILITY INDICES
10. Comparative study of hatching rates of African catfish (Clarias gariepinus Burchell 1822) eggs on different substrates