if δ2 >δ1 (δ2 <δ1 respectively);
3)if λ1 increases, x1 increases, v1 increases and v2 decreases;
4) if δ1 increases, v1 increases (decreases) if
(1 + α2λ2)δ2λ1(1 - δ1δ2) + (α1 - α2λ1λ2)(1 - δ22 + δ2 (δ1 - δ2)) > 0(< 0 respect.) (14)
while v2 decreases (increases) if
-(1 + α2λ2)λ1(1 - δ1δ2) - 2(δ1 - δ2)(α1 - α2λ1λ2) < 0(> 0 respect.) (15)
5) if δ2 increases v1 decreases (increases) if
[2(δ1 - δ2)(α2λ1λ2 - α1) - (1 - δ1δ2)(λ1 + α1)] < 0(> 0 respect.) (16)
while v2 increases (decreases) if
(α1 + λ1)(1 - δ1δ2) + (α1 - α2λ1λ2)(δ1 - δ2 - δ2(1 - δ21)) > 0(< 0 respect.) (17)
The equilibrium outcome defined in Proposition 1, part 3, is characterised by the
following:
6) if α1 increases, v1 increases while xe1 and v2 remain unchanged;
7) if α2 (or λ2) increases, xe1 , v1 and v2 increase;
8)if λ1 increases, v1 increases, while v2 and xe1 remain unchanged;
9) if δ1 increases, xe1 and v2 decrease, while v1 increases (decreases) if
α1 - α2λ1λ2 (1 - δ22) > 0(< 0 respect.) (18)
11