below:
(1 — δι)[1 — δ1δ2 + αιλι(1 + δι)(1 — δ2)]
(1 - διδ2)
(24)
Then the equilibrium payoffs are as follows:
u1
1 — δ1δ2 + α1δ1λ1(1 — δ1δ2)
1 — δ1δ2
u2
α2(1 — δι)
1 — δ1δ2
(25)
(26)
2) If o ≤ α1 ≤ q, the equilibrium demands are defined in (27) and (28) below
x1
y2
(1 — δ2)[(1 — διδ2)λι + (1 — δ1)(α2λ1λ2(1 + δ2) — δ2αι(1 + δι))]
λ1(1 — δ1δ2)2
(1 — δ1)[(1 — δ1δ2)λ1 + (1 — δ2)(α1(1 + δ1) — α2λ1λ2δ1(1 + δ2))]
λ1(1 — δ1δ2)2
(27)
(28)
and the equilibrium payoffs are as follows:
u1
u2
1 — δ2
λ2(1 — δ1δ2)2
[(λ2 + α2)(1 — δ1δ2) + (α2 — α1λ1λ2)(δ2
— δ1)]
δ2(1 — δ1)
(1 — δ1δ2)2
[λ2(1 + α1λ1)(1 — δ1δ2) + (α2 — α1λ1λ2)(δ2
— δ1)]
(29)
(30)
3) If q ≤ α1 ≤ 1, the equilibrium demands are y2 =1 and x1 = xe1 ∈ (0, 1), where
(1 — δ2)[(1 — δ1δ2)λ2 + α2(1 — δ1)(1 + δ2)]
(1 — δ1δ2)λ2
(31)
and the equilibrium payoffs are as follows:
u1
u2
(1 — δ2)[λ2(1 — δ1δ2) + α2(1 + δ2)(1 — δ1) + α1δ1λ1λ2]
λ2(1 — δ1δ2)
δ2[λ2(1 — δ1δ2) + α2δ2(1 — δ1)]
1 — δ1δ2
19
More intriguing information
1. The name is absent2. The name is absent
3. The name is absent
4. Moffett and rhetoric
5. The name is absent
6. Visual Perception of Humanoid Movement
7. A Computational Model of Children's Semantic Memory
8. The name is absent
9. L'organisation en réseau comme forme « indéterminée »
10. Optimal Tax Policy when Firms are Internationally Mobile