below:
(1 — δι)[1 — δ1δ2 + αιλι(1 + δι)(1 — δ2)]
(1 - διδ2)
(24)
Then the equilibrium payoffs are as follows:
u1
1 — δ1δ2 + α1δ1λ1(1 — δ1δ2)
1 — δ1δ2
u2
α2(1 — δι)
1 — δ1δ2
(25)
(26)
2) If o ≤ α1 ≤ q, the equilibrium demands are defined in (27) and (28) below
x1
y2
(1 — δ2)[(1 — διδ2)λι + (1 — δ1)(α2λ1λ2(1 + δ2) — δ2αι(1 + δι))]
λ1(1 — δ1δ2)2
(1 — δ1)[(1 — δ1δ2)λ1 + (1 — δ2)(α1(1 + δ1) — α2λ1λ2δ1(1 + δ2))]
λ1(1 — δ1δ2)2
(27)
(28)
and the equilibrium payoffs are as follows:
u1
u2
1 — δ2
λ2(1 — δ1δ2)2
[(λ2 + α2)(1 — δ1δ2) + (α2 — α1λ1λ2)(δ2
— δ1)]
δ2(1 — δ1)
(1 — δ1δ2)2
[λ2(1 + α1λ1)(1 — δ1δ2) + (α2 — α1λ1λ2)(δ2
— δ1)]
(29)
(30)
3) If q ≤ α1 ≤ 1, the equilibrium demands are y2 =1 and x1 = xe1 ∈ (0, 1), where
(1 — δ2)[(1 — δ1δ2)λ2 + α2(1 — δ1)(1 + δ2)]
(1 — δ1δ2)λ2
(31)
and the equilibrium payoffs are as follows:
u1
u2
(1 — δ2)[λ2(1 — δ1δ2) + α2(1 + δ2)(1 — δ1) + α1δ1λ1λ2]
λ2(1 — δ1δ2)
δ2[λ2(1 — δ1δ2) + α2δ2(1 — δ1)]
1 — δ1δ2
19
More intriguing information
1. How Offshoring Can Affect the Industries’ Skill Composition2. The Impact of Optimal Tariffs and Taxes on Agglomeration
3. Computational Batik Motif Generation Innovation of Traditi onal Heritage by Fracta l Computation
4. The name is absent
5. Thresholds for Employment and Unemployment - a Spatial Analysis of German Regional Labour Markets 1992-2000
6. The Prohibition of the Proposed Springer-ProSiebenSat.1-Merger: How much Economics in German Merger Control?
7. The name is absent
8. Sector Switching: An Unexplored Dimension of Firm Dynamics in Developing Countries
9. Luce Irigaray and divine matter
10. Developing vocational practice in the jewelry sector through the incubation of a new ‘project-object’