The name is absent



28

(H) H 1C is an integer matrix.

A polynomial-time algorithm for finding U and H can be also found in [8, 13]. Now
let
H and U = (tʃɪ, U2) be as in Theorem 6.2, with U1 an n × m1 matrix and U2 an
n × (n — m1) matrix.

Theorem 6.3

(i) Q is nonempty if and only if H~1d Zml.

(H) IfQ is nonempty, every point x of Q can be written as

x = U1H~1d + U2z, for some z Zn~ml.

When Q is nonempty, we have

Po = { У Rn I AU у ≤ b, and CUy = d}

= {y Rn   I AU у ≤ b, and [H, Q]y = d }

= { У Rn   I У = ((B^1d)τ, zγ)

and AU(fH~1d)zτ)τ <b,zE pn~ml ɪ

= {y Rn I у = ((H~1d) zτ)τ, and Az <b, z E Rn~ml }.

Let

P = {z Rn~ml Az<b}.

Doing so leads to an (n — m1)-dimensional polytope P in Rn~. Now the remaining
discussions are the same as in the previous section. Let us demonstrate this by an
example. We are given a polytope

P = { x R3 I af x ≤ bi, i = 1, 2, 3, and c1x = d1},

where a1 = (—1,0, 0)τ, a2 = (0,-1, 0)τ, a3 = (0,0,—l)τ, c1 = (4,12,2)τ, b1 = 0,
b2 = 0, b3 = 1, and d1 = 2. Then we have

C = [4 12 2],



More intriguing information

1. The name is absent
2. The name is absent
3. The name is absent
4. Restructuring of industrial economies in countries in transition: Experience of Ukraine
5. THE MEXICAN HOG INDUSTRY: MOVING BEYOND 2003
6. Antidote Stocking at Hospitals in North Palestine
7. Group cooperation, inclusion and disaffected pupils: some responses to informal learning in the music classroom
8. INSTITUTIONS AND PRICE TRANSMISSION IN THE VIETNAMESE HOG MARKET
9. THE USE OF EXTRANEOUS INFORMATION IN THE DEVELOPMENT OF A POLICY SIMULATION MODEL
10. The name is absent