7 Appendix
Lemma 1 Using (12) and (13), then Fκ(k) = (1 + c1 ) r.
Proof. Differentiate (12) w.r.t. time and substitute it in (13), then Fχ (k) =
(1 + ci) r is implied. ■
Lemma 2 Using (2), (9), (10), cv = cvQe'xt and λ = ʌoeʌt, then Fe(k) = w +
≡yθj r - λ + β (Ù - V) + у .
Proof. Differentiate (2) w.r.t. V and (9) w.r.t. time, use cv := cvQe'xt and
λ := ʌoeʌt, then
e~rtcυ (r - λ) + 1-β [μι + μ1β (Ù - V)] θ- = = 0
ʌ
^ -μι = γ-λ3βe~rtcυ (r - λ) θβ + μ1β (Ù - V) .
Substitute (10) for -/11, then
ʌ
γ-Γβe~rtcυ (r - λ) θβ + μ1β (/ - V) = e-rt [Fe(k) - w] - μ1n
and substitute (9) for μ1, then
ʌ ʌ
c l λ ∕i [β (/ - V) + n∖ = Fe(k) - W - c /" θ (r - λ)
1 — βL∖ / J 1 — β ∖ /
ʌ
^ Fe(k) = w + cυ ʌ r - λ + β (Ù - V) + y θβ.
1 — β L ∖ / -
Therefore, (16) is implied. ■
Proposition 3 Using (1), (6), (7a), (15), (16) and (20), then the efficient factor
allocation function Φι(k) := —^λ°,∙, ka = θβ follows.
c^λ[{τ+rUka 1+"7-λ]
Proof. Differentiate (7a) w.r.t. E, substitute this and (6) in (16), then
θβ = (1 - qQ (1 - β)(1 - ш) λ ka
. . . .
cυλ r + β (и - V) + у - λ
Differentiate (7a) w.r.t. K and substitute this, (15), λ = λoext and cυ = cvqcxt in
the above equation, then
θβ = (1 - qQ (1 - β) (1 - ʃ) λo k“
cυ0λ [ɪkɑ-1 + β(/ - V) + n - λ
28
More intriguing information
1. Gender and headship in the twenty-first century2. The name is absent
3. Innovation Trajectories in Honduras’ Coffee Value Chain. Public and Private Influence on the Use of New Knowledge and Technology among Coffee Growers
4. The name is absent
5. ¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia empírica sobre residuos sólidos y agua.
6. National urban policy responses in the European Union: Towards a European urban policy?
7. The voluntary welfare associations in Germany: An overview
8. The name is absent
9. The Institutional Determinants of Bilateral Trade Patterns
10. The name is absent